Global reorganization of atmospheric circulation during Dansgaard–Oeschger cycles

Jens Fohlmeister and Natasha Sekhon, Andrea Columbu, Guido Vettoretti, Nils Weitzel, Kira Rehfeld, Cristina Veiga-Pires, Maya Ben-Yami, Norbert Marwan, and Niklas Boers

Edited by Sylvia Dee, Department of Earth, Environmental and Planetary Science, Rice University, Houston, TX

Ice core records from Greenland provide evidence for multiple abrupt cold–warm–cold events recurring at millennial time scales during the last glacial interval. Although climate variations resembling Dansgaard–Oeschger (DO) oscillations have been identified in climate archives across the globe, our understanding of the climate and ecosystem impacts of the Greenland warming events in lower latitudes remains incomplete. Here, we investigate the influence of DO-cold-to-warm transitions on the global atmospheric circulation pattern. We comprehensively analyze δ18O changes during DO transitions in a globally distributed dataset of speleothems and set those in context with simulations of a comprehensive high-resolution climate model featuring internal millennial-scale variations of similar magnitude. Across the globe, speleothem δ18O signals and model results indicate consistent large-scale changes in precipitation amount, moisture source, or seasonality of precipitation associated with the DO transitions, in agreement with northward shifts of the Hadley circulation. Furthermore, we identify a decreasing trend in the amplitude of DO transitions with increasing distances from the North Atlantic region. This provides quantitative observational evidence for previous suggestions of the North Atlantic region being the focal point for these archetypes of past abrupt climate changes.

Significance

Dansgaard–Oeschger (DO) events are pronounced abrupt climate transitions between so-called stadial and interstadial conditions during glacial intervals. Our study targets a long-standing question in paleoclimatology, concerning the global-scale atmospheric reorganization during these rapid large-scale climate transitions with a comprehensive analysis of globally distributed speleothem proxy data. The global dataset suggests significant large-scale shifts in the atmospheric circulation pattern associated with the DO events. We show that the proxy-inferred changes are consistent with simulations of a state-of-the-art Earth system model and explain the reorganization on that basis.

Author contributions: J.F. and N.B. designed research; J.F. performed research; J.F., N.S., A.C., N.W., K.R., C.V.-P., M.B.-Y., and N.M. analyzed data; G.V. provided and analyzed climate model simulations; and J.F., N.S., A.C., G.V., N.W., K.R., C.V.-P., M.B.-Y., N.M., and N.B. wrote the paper.

The authors declare no competing interest.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2302283120/-/DCSupplemental.

This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

To whom correspondence may be addressed. Email: jfohlmeister@bfs.de.

Published August 28, 2023.

PNAS 2023 Vol. 120 No. 36 e2302283120
https://doi.org/10.1073/pnas.2302283120
Fig. 1. Climate records of DO cyclicity. Evidence of DO-event is provided from various locations for the period between 60 and 10 ka B.P. (A) Greenland stable oxygen isotope (blue) and dust (brown) records (3) are proxies for temperature and atmospheric circulation changes. (B) Sea ice cover is provided by the PBIP25 (brassicasterol C25 isoprenoid lipid) sea ice indicator from the SE Norwegian Sea (21). (C) The strength of the AMOC (gray) and the influence of AABW (green) at the Bermuda Rise is represented by Pa/Th and δ^{13}C of benthic foraminifera (22, 23). Wind circulation pattern in (D) Eastern Europe/western Asia (13) and (E) central North America (19) are obtained from δ^{18}O values of speleothem carbonate. Amount of precipitation in (F) South America (24) and (G) Eastern Asia (5), inferred from δ^{18}O values of speleothem carbonates. (H) Antarctic temperature changes (5) from stable isotope composition of ice. Gray bars denote the duration of interstadials as defined from Greenland (3). Locations of records are indicated in Fig. 2.
increased AMOC strength as derived from a fully coupled ocean–atmosphere global climate model (28).

It is believed that the signal of abrupt warming spreads from the North Atlantic region over large parts of the Earth in rapid succession (15, 29). A lag of around 120 y between the warming transitions in Greenland and corresponding temperature maxima in Antarctica has been reported (5, 30), supporting evidence for the interhemispheric redistribution of heat through the ocean by the so-called bipolar seesaw (31, 32). This result suggests a north-to-south directionality, propagated by oceanic processes to the high latitudes of the Southern Hemisphere. In contrast, no significant and systematic leads or lags between the onset of the rapid warming events in Greenland and corresponding transition onsets in independently dated continental archives of the low to mid-latitudes could be found (14, 33, 34), which hints at a rapid transport of the initial climate anomaly from the North Atlantic across the entire northern hemisphere and low latitudes, leading to a reorganization in storm tracks and atmospheric circulation patterns.

Materials and Methods

Here, we focus on the amplitudes of these transitions in atmospheric circulation, investigating their global pattern and spatial distribution, as well as their impact on shifts in moisture source regions, changes in seasonality, and in the amount of precipitation, as recorded in speleothem $\delta^{18}O$ records. We utilize $\delta^{18}O$ records of 111 speleothems from 67 different caves distributed across all continents except Antarctica. The data were extracted from the second version of the Speleothem Isotope Synthesis and Analysis (SISAL) database (35). A detailed description of the data and choice of criteria for suitable speleothems is provided in the supplement. We analyze the time series with respect to abrupt climate warming events—i.e., detection of DO transitions from stadial to interstadial climate conditions. To detect the transitions in the different time series, we follow an established method (9), sliding two neighboring windows through the datasets of $\delta^{18}O$ values. The largest difference of the averaged values in both windows provides an estimate for the center point of a potential abrupt transition. To be assigned as a transition, the strong change in $\delta^{18}O$ must moreover be close to a known stadial–interstadial transition (3; for technical details, see supplement). In our study, we focus on interstadial minus stadial $\delta^{18}O$ differences in precipitation derived from speleothem $\delta^{18}O$ values.

In addition to speleothem $\delta^{18}O$ time series, we analyze the global patterns of temperature and precipitation changes associated with stadial–interstadial transitions that arise naturally and enforced in a fully coupled version of the National Center for Atmospheric Research (NCAR) Community Climate System Model, version 4 (CCSM4, 36, 37). Applied boundary conditions (trace gases, orbital configuration, land-sea mask, and continental ice shields) were those of 21 ka B.P. The model was run at 1° × 1° for both the atmosphere and ocean, a resolution comparable to CMIP5 models (for details, see SI Appendix). We calculated 100-y averages of precipitation and temperature data during each stadial and interstadial state and determined the difference in order to compare them to the speleothem $\delta^{18}O$ differences.

Results

Speleothem $\delta^{18}O$ is enriched compared to $\delta^{18}O$ in cave drip water by temperature-dependent fractionation processes during carbonate deposition on speleothem surfaces. Cave air temperature is generally well represented by mean annual air temperatures. Therefore, we can account for this fractionation process by using CCSM4-derived mean annual air temperature for stadials and interstadials and applying a laboratory-based fractionation equation (38). Thus, we can derive the $\delta^{18}O$ values for drip water during stadials and interstadials. Note that the choice of a different temperature–fractionation relationship obtained in other studies (39, 40) does not influence the results as we focus on $\delta^{18}O$ changes instead of absolute temperatures and the temperature–fractionation slope is similar for all relevant studies. The oxygen isotope fractionation within the cave due to temperature changes is mostly small, except for Europe where temperature differences between stadials and interstadials are largest (SI Appendix, Fig. S8). Global datasets for $\delta^{18}O$ of precipitation and cave drip water indicate that the mean drip water $\delta^{18}O$ closely represents variations in $\delta^{18}O$ of local precipitation (41) and especially as we investigate climate-driven changes in $\delta^{18}O$ of two climate states, climate-independent cave site-specific offsets will cancel. Hence, drip water $\delta^{18}O$ variations as derived by speleothem $\delta^{18}O$ values can primarily be interpreted as a proxy for $\delta^{18}O$ changes in precipitation, which in turn is often used as a proxy for both precipitation amounts and changes in moisture sources (19, 20), although other less important processes can impact $\delta^{18}O$ at specific locations as well.

We find the $\delta^{18}O$ time series to exhibit characteristic patterns of the stadial–interstadial transitions for each of the 111 speleothems. The range of the $\delta^{18}O$ difference in precipitation for individual stadial–interstadial transitions is approximately between −3.5 and +4.9‰, where a negative sign indicates more negative $\delta^{18}O$ values during interstadials compared to stadials, and a positive sign is related to less negative $\delta^{18}O$ values. We take the median amplitude of these individual transitions across each cave site for a more robust data evaluation, reducing the impact of possible outliers originating from growth rate and data resolution variations. The median stadial–interstadial transition amplitudes range from −3.1 to +2.4‰ during the last glacial period. Compared to the median $\delta^{18}O$ changes of a stadial–interstadial transition in Greenland’s NGRIP data (around 3.5‰), the absolute median values of $\delta^{18}O$ changes during stadial–interstadial transitions are smaller for all speleothem records investigated. We observe a pronounced global pattern with spatial heterogeneity of opposite signs in speleothem $\delta^{18}O$ changes (Fig. 2).

Discussion

For Asia, more negative $\delta^{18}O$ values in precipitation during interstadials compared to stadials are observed in the speleothem records (Fig. 2). Following the general interpretation of $\delta^{18}O$ values in paleoclimate data from the South Asian monsoon region (12, 42, 43), namely that decreases of $\delta^{18}O$ reflect more humid trends, the amount of precipitation is higher during interstadials than stadials. This is in line with the interpretation of isotope-enabled millennial-scale cooling events (44, 45) and is consistent with the CCSM4 simulations, where large parts of the southern Asian monsoon region show wetter conditions during interstadials (Fig. 2A). We note here that modeling studies focussing on the East Asian Summer Monsoon system highlight an important contribution of the precipitation history (44, 45), but also argue for variations of the precipitation source regions (46) to explain observed shifts in $\delta^{18}O$ in precipitation.

Unfortunately, there is only little information from other speleothem precipitation-sensitive proxies available in this region. Often, the Mg/Ca ratio and Sr/Ca ratio are considered as more reliable proxies to trace changes in the amount of precipitation. To date, the only study focussing on $\delta^{18}O$ and trace elements for millennial-scale variability during the deglacial period indeed suggests that $\delta^{18}O$ records in the northern/eastern Asian monsoon region do not necessarily reflect changes in the amount of precipitation but possibly in the length of the annual monsoon rainfall (47).

Changes in the amount of precipitation also constitute the leading interpretation for variations in $\delta^{18}O$ values in speleothems from the South American monsoon domain (18, 48).
However, modeling studies showed that δ¹⁸O changes, especially in eastern Brazil, are also enhanced by a direct propagation of δ¹⁸O-depleted meltwater effects (49). During stadial–interstadial transitions, speleothems from South America show an increase in their stable oxygen isotopic composition, representing dryer conditions during interstadials compared to stadials. Thus, the δ¹⁸O values of the stadial–interstadial transitions in this region react in the opposite way compared to the Asian monsoon region, where the δ¹⁸O shifts have been mainly ascribed to a northward shift of the Intertropical Convergence Zone (ITCZ, (18, 48, 50). Such a shift was previously predicted by modeling studies investigating the impact of high- latitude warming and reduced sea ice cover on the position of the ITCZ (51). A northward shift in the mean position of the ITCZ goes in concert with an associated asymmetry in the Hadley circulation in the two hemispheres (18) as well as a northward displacement of the upper-level subtropical westerly jet. Hemispherically averaged, this asymmetry results in more precipitation in the Northern Hemisphere monsoon regions and less precipitation in the Southern Hemisphere monsoon regions during interstadial conditions (42). A similar feature is also present in the CCSM4 model data. Indeed, the northward-shifted ITCZ during interstadials is expressed by a higher (lower) rainfall amount in the northern (southern) hemispherical (sub)tropical regions (Fig. 2A).

Stable oxygen isotope and model results indicate that other regions, such as the subtropical northern hemisphere, are also affected by the shift of the ITCZ and an associated reorganization of the Hadley Circulation. For example, we see a decrease in speleothem δ¹⁸O in the Caribbean (Fig. 2A) during stadial–interstadial transitions. This has been reported to reflect an increased amount of rainfall in response to an ITCZ shift toward more northern locations during interstadials (52, 53) and is present in all speleothem records from this region. In contrast, the CCSM4 model results show a heterogeneous precipitation pattern for the Caribbean and do not indicate a clear direction and high level of agreement compared to South and South-East Asia and the northern part of South America.

For all of Europe, we observe a consistent increase in δ¹⁸O values in precipitation during stadial–interstadial transitions (Fig. 2B), which most likely has a common cause. One possible process is a change in the δ¹⁸O values and temperature of the moisture source. Stable oxygen isotope values derived from planktonic foraminifera of marine sediments in the Atlantic (Iberian Margin and off Ireland) show differences of about 1‰ with lower values during interstadials (13, 54). At the same time, they show warmer surface waters by about 10 °C. A 10 °C change of surface water (8, 55, 56) indicates that seawater δ¹⁸O values must have been about 1.2‰ higher in interstadials compared to stadials using commonly accepted oxygen isotope fractionation factors (38–40). This value is comparable to the observed averaged interstadial–stadial δ¹⁸O differences in precipitation at European cave sites (0.95‰). We conclude that δ¹⁸O changes at the moisture source seem to be the main reason to explain most of the observed δ¹⁸O differences during stadial–interstadial transitions over the European continent.
Another cluster of speleothem records located over North America also shows an increase in δ18O values during stadial–interstadial transitions. This region is situated well within the present-day westerly wind system. The stadial–interstadial shifts in speleothem δ18O from the North American continent have originally been interpreted in terms of northward shifts in the westerly storm tracks (Fort Stanton Cave; 19) and related to changes in seasonal precipitation, with summers usually showing higher δ18O values compared to winters. The other speleothems from the North American continent show a consistent pattern compared to Fort Stanton speleothems and thus highlight the general applicability of this interpretation. The change in precipitation seasonality is also present in the model data, which show either a strong increase in summer precipitation (Midwest United States) or a reduction of winter rainfall (Western United States) for interstadial compared to stadial conditions (SI Appendix, Fig. S9). An updated explanation is provided by a recent proxy data–climate model comparison study (57). This study suggests tropical–extratropical teleconnections for observed δ18O changes as the driving mechanism for increased winter moisture supply from subtropical latitudes during stadial periods in the Western United States. This explanation again stresses the importance of precipitation seasonality.

There is relatively less data available from the Southern Hemisphere outside the tropics. Nevertheless, the negative values observed from the two cave sites in New Zealand (Fig. 2A) suggest a northward shift in the westerly wind system of the Southern Hemisphere during interstadials, which occur in concert with the derived northern hemisphere westerly and ITCZ shifts. This shift in the westerlies most likely led to a change in the source of precipitation.

Recently, there was a model setup published, which was designed to model the stable oxygen isotope composition of precipitation during the last deglaciation (isotope-enabled transient climate experiment—iTraCE, (45, 58) with different forcing (greenhouse gases, ice sheet topographies, orbital parameters, injection of freshwater). When considering the transition from the Heinrich 1 state to the Bolling/Allerød phase during the last deglaciation and using the fully forced experiment setup (greenhouse gases, orbital forcing, freshwater, and ice sheets) as an equivalent for the glacial stadial–interstadial transitions, it might be suitable to compare the speleothem data with the iTraCE results. Overall, there is excellent agreement between the speleothem-derived interstadial–stadial δ18O offsets in precipitation and the results for the stable oxygen composition of precipitation of the iTraCE model experiments (SI Appendix, Fig. S6 and section 5). This comparison, using an additional, independent model simulation, strongly corroborates our results presented in Fig. 2A.

We proceed with analyzing the cave-site-specific mean interstadial–stadial differences in δ18O with respect to latitude (Fig. 3). The northern hemisphere high to midlatitudes show strong positive values. Toward lower latitudes, the offset becomes less positive and turns into a negative shift until a minimum is reached in the latitudinal belt between 20°N and 40°N. The more southward isolate shift for the North American sites compared to the ones in Europe and Asia might likely be explained by the more southward extent of the Laurentide ice sheet as compared with the Fennoscandian one. From about 20°N toward the equator and further south (10°S to 30°S), the δ18O differences for stadial–interstadial transitions increase. In general, the absolute values of the data between 10°S to 30°S are smaller than those in the northern hemisphere mid-latitudes, albeit some large interstadial–stadial differences are observable on the South American continent. The values even further south than 30°S show less positive interstadial–stadial δ18O differences again. In the Southern Hemisphere, only a few cave sites are available and the robustness of those observations could be questioned, but the described features appear also to be valid, when accounting for all detected individual events (SI Appendix, Fig. S10).

Outside of Europe, where strong moisture source temperature and δ18O changes superimpose the precipitation δ18O changes, the δ18O pattern in precipitation is consistent with the above-discussed changes in global atmospheric circulation patterns. During a stadial–interstadial transition, the mean ITCZ position is shifted northward, resulting in decreased precipitation in South America, while at the same time the northward ITCZ shift results in lower δ18O values in the monsoon regions of the northern hemisphere — e.g., in the Caribbean, on the Indian subcontinent, and over large parts of China. At the same time, the northward ITCZ shift during the phases of strong sea ice reduction is accompanied by a northward shift of the westerlies, which contributes to the observed changes in δ18O over North America and New Zealand.

To further investigate the geographical origin of stadial–interstadial transitions, we consider the change of the absolute amplitude of interstadial–stadial δ18O differences with increasing distance from the North Atlantic region. Our analysis shows that among all records, the largest speleothem δ18O interstadial–stadial differences are from caves closest to this region (Fig. 4).

As some caves and speleothems might not detect the full δ18O amplitude of stadial–interstadial transitions (SI Appendix, section 6), we consider only the amplitude for those cave sites that represent the largest 33% of all values per 2,500 km distance bin in the following. The mean δ18O difference of the speleothems within the group of the maximum amplitude sites for a given distance decreases with increasing distance from the high northern latitudes (Fig. 4). This is a robust feature, independent of the applied cut-off value (SI Appendix, supplemental text and Fig. S7) and with a correlation coefficient between the considered δ18O differences and distance from Greenland of −0.62 (p < 0.01). Modeled relative absolute precipitation changes between interstadials and stadials at the cave sites show a similar behavior. This proxy data- and model-based observation provides additional information on the geographical origin of the DO events. From a potential source region where the transitions are triggered, any signal is expected to attenuate with increasing distance from that origin. We hypothesize that this is also a valid feature in the complex and highly nonlinear climate system, because for longer distances, the influence of other processes modifying the
to these two variables showing a similar signal attenuation structure onto precipitation and its oxygen isotope signature. This would lead close to the North Atlantic. As relevant variables for precipitation gradient changes during stadial–interstadial transitions being largest the signal attenuation is driven by temperature and temperature from the overall trend due to local characteristics. We propose that North Atlantic core region suggests the existence of a general physical away (e.g., southern American sites). Nevertheless, the statistically sites), which show a smaller response than some locations farther core region in both simulation products (e.g., the Mediterranean could explain why there exist some regions closer to the North Atlantic northern hemisphere is larger than the response in the Southern Hemisphere because of atmospheric wave propagation. This could why there exist some regions closer to the North Atlantic core region in both simulation products (e.g., the Mediterranean, which show a smaller response than some locations farther away (e.g., southern American sites). Nevertheless, the statistically highly significant relationship between signal and distance from the North Atlantic core region suggest the existence of a general physical mechanism responsible for the signal attenuation despite deviations from the overall trend due to local characteristics. We propose that the signal attenuation is driven by temperature and temperature gradient changes during stadial–interstadial transitions being largest close to the North Atlantic. As relevant variables for precipitation and its isotopic signature such as sea level pressure, evaporation, and winds are strongly influenced by the temperature and temperature gradient changes (59, 60), the signal attenuation could be imprinted onto precipitation and its oxygen isotope signature. This would lead to these two variables showing a similar signal attenuation structure as temperatures. However, the exact processes have yet to be investigated.

We have thus provided a consistent global analysis of stadial–interstadial transitions with a focus on associated changes in atmospheric circulation and precipitation. The maximum amplitudes support the hypothesis that the North Atlantic region is the trigger of the stadial–interstadial transitions. We were able to obtain a global picture of changes in δ18O of precipitation related to stadial–interstadial transitions, which helps to define the geographical constraints on the maximum shifts of the mean position of the ITCZ and an associated relocation in the mid-latitude weste"ries. Our proxy-based findings are in remarkable agreement with simulations of unforced DO-type oscillations with a state-of-the-art, high-resolution climate model and simulated oxygen isotope changes in a fully forced transition between Heinrich stadial 1 and the Bolling/Allerød phase. Our results will be used as benchmarks for other isotope-enabled general circulation models to investigate the stadial–interstadial transitions in future research, aiming for a more complete picture of abrupt climate changes in comprehensive climate models.

Data, Materials, and Software Availability. SISAL data are available at https://researchdata.reading.ac.uk/256/61. The code for data extraction and numerical analysis is available at https://github.com/jensfohlmeister/Sisal_DO_analysis (62). Previously published data were used for this work (35, 37).

ACKNOWLEDGMENTS. This is TiPES (Tipping Points in the Earth System) contribution #103; the TiPES project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 820970. N.B. acknowledges further funding by the Volkswagen Foundation. M.B.-Y. and N.B. acknowledge additional funding by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 956170. C.V.P. acknowledges the financial support of the Portuguese Foundation of Science and Technology to Centre for Marine and Environmental Research through UID/00350/2020 CIMA. N.W. and K.R. acknowledge funding by the Deutsche Forschungsgemeinschaft project no. 395588486 and the German federal ministry of Education and Research through the Palmod project (code 01LP1926C). This study includes data compiled by SISAL, a working group of the Past Global Changes (PAGES) project and is in part inspired by discussions at a SISAL workshop in Xi’an (China) in 2019. PAGES received support from the Swiss Academy of Sciences and the Chinese Academy of Sciences.

Author affiliations: *Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany; Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912; †Institute at Brown for Environment and Society, Brown University, Providence, RI 02912; ‡Department of Earth Sciences, University of Pisa, 56126 Pisa, Italy; ¶Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, 2200 Copenhagen, Denmark; †Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany; ‡Institute of Environmental Physics, Heidelberg University, 69120 Heidelberg, Germany; ¶Department of Physics, University of Tubingen, 72076 Tübingen, Germany; Centre for Marine and Environmental Research, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; *Earth System Modelling, School of Engineering & Design, Technical University of Munich, Munich 80333, Germany; ‡Global Systems Institute, University of Exeter, Exeter EX4 4QF, UK; and †Department of Mathematics, University of Exeter, Exeter EX4 4QF, UK.

20. X. Wang et al., Hydroclimatic changes across the Amazon lowlands over the past 45,000 years. Nature 541, 204-207 (2017).

