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Note S1. Introduction

This supplementary information (SI) accompanying the manuscript titled
”Landslide Topology Uncovers Failure Movements” provides a comprehen-
sive analysis of landslide topology and its significance in identifying landslide
failure types based on their movement. The SI offers an analysis of topologi-
cal features and their probability distributions, quantifying variations among
different failure types and the relationship between landslide topology and
physical processes. Additionally, it notes observations on the distinctions
between topology and geometry in differentiating failure movements, includes
ancillary sensitivity analyses conducted in scenarios with limited data, and ver-
ifies previously undocumented landslide inventories. It also details information
on coupled landslide movements within complex landslide scenarios, discusses
the method’s impact on debris avalanches, and concludes with remarks on the
method’s technical limitations. Lastly, the SI presents measures to evaluate
model performance, ensuring a robust assessment of the method’s efficacy in
their predictions.

Note S2. Behavior of different failure types

The inherent differences between failure types, notably their kinematic and
mechanical behaviors, contribute prominent intricacies to the topography (see
surface profiles in Figure 1 in the main manuscript). These intricacies are
attributed to slope deformity, interior deformation, kinematic width of fail-
ures while propagating down-slope, main scarp deformation, run-out length
represented by the debris/earth/soil transportation, and accumulated debris,
and others captured by topology. The following are some of the most common
failure types and their various behaviors.

The profile of rotational slides is marked by a conspicuous primary scarp
and a distinctive back-tilted bench at the head, but little interior deformation
(a schematic view can be seen in Figure 1 in the main manuscript). They
are typically slowly moving a large portion of the weak rock mass. At the
same time, kinematically rapid planar sliding is marked by the sliding of a
rock mass on a planar rupture surface with little to no internal deformation,
where the scarp might be separated from the stable rock at deep vertical
tension cracks. Typically, they exhibit very compact shapes. Cohesion, c plays
an important role in slides, as the degree of internal strength between the
particles in a block of material determines the strength and stability along the
slip plane. Translational landslides, like the ancient Seimareh slide in Iran’s
Zagros Mountains, are among the largest and most destructive on Earth.12

Flows are characterized by very rapid movements consisting of saturated
granular material on moderate slopes, including liquefaction of materials (in
the context of co-seismic triggers) or excess pore pressure (in the context of
rainfall triggers) originating from the landslide source. When the internal fric-
tion angle, ’, is low (due to the mixture of solid and fluid particles), less
external force is required to instantiate a failure because they are displaced
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quite easily. Kinematically flow-ish movements are observed with channelized
streams and a bulk deposit of debris at the talus (deposition zone), representing
highly elliptical, elongated bodies.7

Usually limited in volume, falls (particularly rock falls) exhibit ballistic
movements (high velocity, energy, and momentum) that are massively destruc-
tive. They detach from cliffs and move at high velocities, either by rolling,
falling, or bouncing due to the influence of gravity. The run-out of a rock fall
is often shorter and is more likely to travel along a straight path, whereas the
run-out of debris flows is longer and can meander and spread out over a wider
area.3

Complex failures are very hard to describe, as there is an amalgamation of
different failure types occurring at the same time or subsequently, and they can
therefore exhibit multiple characteristics of other failure types. For example,
irregular debris slides evolving into a debris flow or any other combination of
slides, flows, and falls eventually evolving into another movement style can be
considered examples of complex failure.6, 9

Such morphological and geometrical information for each distinct failure
type is theorized to be captured in the topological space by the topological
properties, which are then utilized in the machine-learning model to identify
the failure types.

Note S3. Topological Features

Persistence diagrams capture the life-death information of structures like con-
nected components, holes, and voids. The persistence diagram consists of a
set of f(bi; di)gi=N

i=1 pairs corresponding to each structure type; here, i and N
are the indexes of birth-death pairs and the total number of the birth-death
pairs. Using the set of f(bi; di)gi=N

i=1 pairs, we can calculate various topological
features such as persistence entropy, average lifetime, number of points, Betti
curve-based measure, persistence landscape curve-based measure, Wasserstein
amplitude, Bottleneck amplitude, Heat kernel-based measure, and landscape
image-based measure.

Some of the above topological features can be explained using a lifetime
vector that is calculated using a set of f(bi; di)gi=N

i=1 pairs. The lifetime vector
[li]

i=N
i=1 is calculated as the difference between death and life of the (bi; di)

pair (li = di � bi). The number of points, average lifetime, and persistence
entropy are the length, average, and Shannon entropy of the lifetime vector. In
comparison, topological features like Bottleneck and Wasserstein’s amplitudes
quantifying the magnitude of the lifetime vector are p-norm (p=2) and1-norm
of the lifetime vector, respectively.

The Betti curve-based feature is a p-norm of a 1D discretized betti curve,
which is a function (B(�) : R ! Z) mapping the persistence diagram to an
integer-valued curve, and it counts the number of birth-death pairs at a given
�, satisfying the condition bi < � < di.

8 Similarly, a persistence landscape
curve-based feature is a p-norm of a 1D discretized persistence landscape curve
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Figure S1 : Illustration of topological components on typical landslide
movements. The diagram shows a schematic outlook of how empty spaces
are created in di�erent landslide types (green color expresses the displaced
material for each movement type). This illustration is shown using a simpli�ed
2D transformation of a rather complex 3D topological phenomenon for ease of
understanding. Sub-plots (a{c) refer to the possible con�gurations of empty
spaces created in the typical polygons of each failure type. Slides tend to have
the fewest empty spaces or holes due to their compact shapes, followed by
falls. Flow-type failures tend to have multiple numbers of empty spaces due
to the sinuous shapes they conjure as they follow the landscape's channelized
topography.

de�ned as � (k; � ) : R ! R+ , where � (k; � ) = kmax f f bi ;d i (� )g
i = n
i =1 , kmax is the

k-th largest value of a set of functions de�ned by f bi ;d i (� ) = maxf 0; min (� �
bi ; di � � )g for each (bi ; di ) pair.4

The heat kernel-based feature is ap-norm (p=2) of the discretized 2D
function obtained using the operation of the heat kernel on the persistence
diagram. Heat kernel uses a gaussian kernel (� ) and a negative of the gaussian
kernel (� ) for each (bi ; di ) pair and mirror of ( bi ; di ) pair across the diagonal.11

In contrast, the persistence image-based feature is a p-norm (p=2) of the
discretized 2D function obtained using the operation of the weighted Gaussian
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kernel on all (bi ; di � bi ) pairs in the birth-persistence diagram.1 The birth-
persistence diagram consists of (bi ; di � bi ) pairs where the x-axis shows the
birth information, and the y-axis shows the lifetime of the (bi ; di ) pair.

Note S4. Geometric versus Topological
Features

Geometric properties de�ne an object's shape and size, but topological prop-
erties explain the connections and topological interactions among its parts.
Geometric properties such as area, perimeter, convexity (smallest convex shape
that encompasses all the points of the landslide area), and ellipticity (semi-
minor-axis: shortest radius extending from the ellipse's center to its edge,
capturing the narrowest width of the landslide's elliptical representation)
de�ne the physical dimensions of a landslide, whereas topological properties
such as the average lifetime of holes, Betti curve, and landscape curve describe
the connections and interactions of the soil and rock masses, the width of
kinematic propagation, and the depth of failure in a landslide. Geometric prop-
erties are, however, sensitive to any changes made to the original shapes of the
geometry and, therefore, more susceptible to drastically changing the geomet-
ric property values. For example, any change to a landslide's boundary/body
would inadvertently change each of the values of geometric properties like area,
perimeter, convexity, etc., but the same cannot be said for topology, as it relies
on the number of voids that are generated based on the overall shape of the
landslide body. This is even more pronounced upon investigating the landslides
in 3D. Since these geometric properties cannot be broadcasted to 3D, much
information related to variational changes in the topography (attributed to
elevation and slope) is lost. As TDA captures this 3D information and utilizes
it when engineering topological features, intricate information on landslides
such as depth of failure, deformation pattern, and the width of kinematic
progression is well recorded.

Therefore, to assess and evaluate the di�erences between the classical and
topological properties, we compare them in this section. This comparison was
based on KDE plots that represent the PDFs of the samples for each failure
type. We also plotted box plots to compare the median values and distribution
of said values between the geometric and topological properties. As we see in
Figure S2-b, the PDFs of the failure types are very similar to each other, specif-
ically when looking at the ellipticity, semi-major axis, perimeter, and width.
However, when comparing them to the topological properties Figure S2-a, we
observe that the PDFs of the failure types are more dissimilar to each other
under each property (e.g., the average lifetime of holes, bottleneck amplitude
of holes, Wasserstein amplitude of holes). This can be the reason why the ran-
dom forest models show promising results, as the PDFs are dissimilar enough
to �nd evident di�erences between each failure type when using the topological
properties/features. This e�ective ability to distinguish failure movements is
also seen across 1) limited samples (the US Paci�c Northwest and Wenchuan,
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Figure S2 : Topological and geometrical feature statistics. Probability
distribution functions of the geometrical and the topological features for each
failure type{ slides (colored in orange), ows (colored in dark blue), complex
(colored in red), and falls (colored in light blue){in Italy. The y-axis shows the
probability density values (calculated using kernel density estimation), and the
x-axis shows the value of topological or geometrical attributes. The topological
properties in plot-a) are: Average lifetime of holes (ALH ), Average lifetime of
connected components (ALC ), Wasserstein amplitude of holes (WAH ), Betti-
curve based feature of connected components (BCC ), Betti-curve based feature
of holes (BCH ), and Bottleneck amplitude of holes (BAH ). The geometric fea-
tures are: area (A), perimeter (P), the ratio of area to perimeter A

P , convex
hull-based measure (Ch ), minor( sm ), and width ( W ) of the minimum area
bounding box �tted to the polygon.
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China; Figure S3), 2) temporal prediction of debris ows and debris slides
in Wenchuan, China, (Figures S4 and S5), and 3) coupled failure movements
under complex landslide scenarios (Figure S6).

Figure S3 : Sensitivity analysis on limited training samples for e�ec-
tive predictions on the US Paci�c Northwest and Wenchuan, China.
The �gure shows the classi�cation accuracy (in%) corresponding to each fail-
ure type (slides: colored in orange, ows: colored in dark blue, complex: colored
in red, and falls: colored in light blue) with the number of training samples for
a) the US Paci�c Northwest and b) Wenchuan, China. The x-axis shows the
number of training samples from each class used to train the model, and the y-
axis shows the classi�cation accuracy (in%) corresponding to each class. At 100
samples, the mean classi�cation accuracy reaches over 65% in the US Paci�c
Northwest and 95% in Wenchuan, China. Even at 20 samples, the performance
reaches 75%. The regions of Denmark and Turkey were not tested due to a
lack of samples within the classes of fall-type (62 samples) and complex-type
(92 samples) within these inventories, respectively.
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Note S5. Veri�cation of landslides in 2005 and
2007 Wenchuan, China
multi-temporal inventory

Figure S4 : Veri�cation of 2005 and 2007 landslides using Google
Earth imagery. Panels (a) and (b) display model predictions for the 2005
inventory, while panels (c) and (d) pertain to the 2007 inventory. The analysis
of certain features, like conspicuous or prominent scarps, channels, mountain
ridges, and travel distances, aids in understanding failure movements. The
plots illustrate predictions for both debris slides (colored in orange) and ows
(colored in dark blue), using these features to corroborate and verify the two
types of movements.

To verify landslide movement types from Google Earth images, we focus
on speci�c geomorphological features that are characteristic of di�erent types
of landslides (debris slides and debris ows in the case of Wenchuan, China).
The approach is as follows:

ˆ Examination of debris ow characteristics :
To identify debris ows, we searched for channelized ow patterns.6 This
phenomenon is crucial in di�erentiating debris ows from other landslide
types. Our attention was also directed towards the recognition of channels
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