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Chapter 6
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6.1 Introduction
Luisa Cifarelli1 and Carlos Hidalgo2
1University of Bologna, Bologna, Italy
2CIEMAT, Laboratorio Nacional de Fusión, Madrid, Spain

One of the most crucial and challenging developments of recent decades has been
the discovery that the environment is fragile. This discovery shows that we cannot
afford to delay the implementation of actions to tackle climate change if the long-
term objective is to limit the increase in temperature of the planet at an affordable
cost. Although the effects of climate change on the environment are too complex to
admit simple solutions, recent developments illustrate how basic science can be
pulled together successfully with social awareness and political action to avert an
environmental tragedy.

This section presents work done in a wide range of research areas, illustrating how
humanity has the responsibility to preserve our delicate planet but also the power to
affect its environment. The chapters highlight the strength of fully interdisciplinary
effort among physicists, mathematicians, and chemists as well as multilateral science
to address global challenges that affect societies at their core.
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A thorough understanding of the Earth’ s system is essential for the life quality of
modern society. It is important to be able to de� ne the conditions for sustainable
development of humanity in order to maintain the Earth’s system within
habitable limits, predict critical transitions and events in the Earth’s dynamics,
and effectively mitigate and adapt to changes and events related to the Earth’s
system to prevent the disastrous consequences of natural hazards. Section 6.2 deals
with Earth system analysis from a nonlinear physics perspective. It describes key
concepts from nonlinear physics and shows that they enable us to treat challenging
problems of Earth sciences.

Energy is the lifeblood of today’ s society and one of the factors that has decisively
contributed to improving humanity’s quality of life. Section 6.3 deals with the
description of physics � elds with relevance for energy technologies. It addresses the
further development of energy sources, such as solar, wind, nuclear � ssion energy,
and storing energy storage systems as well as the quest to develop nuclear fusion,
since the dominance of fossil fuels must decline. It addresses the potential challenges
and opportunities in the development of global energy systems, emphasising how
deeply interconnected the energy and climate debates are.

The invention of the internal combustion engine radically transformed industrial
and personal transport and, consequently, our social organization system. Section
6.4 deals with transport electri� cation for green cities. It addresses research and
development to deploy technologies that enhance the performance of electric drive
vehicles.

Hazardous wastes and materials are diverse, with compositions and properties
that vary signi� cantly between industries and related energy sources. Section 6.5
deals with environmental safety from a chemical perspective to address how
environmental emissions and waste disposal can be managed to meet sustainable
development criteria.

Finally, space weather describes the way in which the Sun, through emergence of
magnetic � eld into its atmosphere, � ares, coronal mass emissions, high-energy
particles, and subsequently induced space conditions, affects human activity and
technology both in space and on the ground. Section 6.6 invites us to understand and
predict space weather.
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6.2 Earth system analysis from a nonlinear physics perspective
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A reliable understanding of the Earth’s system is essential for a good quality of life
formodern society.Natural hazards are the cause ofmost life and resource losses. The
ability to de� ne the conditions for sustainable development of humankind, to keep the
Earth’s system within the boundaries of habitable states, and to predict critical
transitions and events in the dynamics of the Earth’ s systemare crucial tomitigate and
adapt to Earth system–related events and changes (e.g., volcanic eruptions, earth-
quakes, and climate change) and to avert the disastrous consequences of natural
hazards. In this chapter, we discuss key concepts fromnonlinear physics and show that
they enable us to treat challenging problems of Earth sciences which cannot be solved
by classic methods. In particular, the concepts of multiscaling, recurrence, synchro-
nization, and complex networks have become crucial in recent decades for a
substantially more profound understanding of the dynamics of earthquakes, land-
slides, and (paleo)climate. They can even provide a signi� cantly improved prediction
of several high-impact extreme events. Additionally, crucial open challenges in the
realm of methodological nature and applications to Earth sciences are given.

6.2.1 Introduction

The invention of thermoscopes and barometers in the early 17th century enabled the
study of physical parameters of climate variables, such as precipitation, temperature,
and pressure. Exploring the Earth’s system in detached disciplinary practices
became convenient with these early instruments for limited geographic locations.
The disciplinary assessment of individual Earth system components continues to
help in understanding fundamental mechanisms. They have been regarded as
autonomous systems in their own right and further broken down into more
specialized subsystems. One standard topic is to study, for instance, precipitation
concerning more prominent atmospheric modes [1]. Until recent decades, this
traditional practice of studying the four major spheres of the Earth’s system, that
is, the atmosphere, hydrosphere, biosphere, and geosphere, continued
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independently. However, the Earth behaves as an integrated complex system with
nonlinear interactions and feedback loops between and within them [2]. For
example, the in� uence of signi� cant volcanic eruptions on climate oscillations
proves a vital link between the geosphere and the atmosphere [3]. The increasing
availability of data and the rising concerns related to shifts in the global climate
system, concomitant extremes, and natural hazards have urged the development of a
more holistic understanding of the Earth's systemin recent decades (� gure 6.1).

Furthermore, it was assumed that various Earth processes are scale-invariant, that is,
we can expect a phenomenon to occur in several scales when we observe its occurrence
ononlyone scale [4]. Indeed, the scale invariance theorywas applied tomany � elds, such
as the frequency–size distributions of rock fragments, faults, earthquakes, volcanic
eruptions, landslides, andoil � elds, butnot all on theEarth’s systems.Nevertheless, even
the lack of scale invariancemeans that information is stored andperceived differently at
different scales, resulting from mutual interactions of intertwined subcomponents
interacting over a wide range of scales. Generally, a deep understanding of these
multicomponent interactions between the different subsystems of the Earth’s system,
including human activities, requires an interdisciplinary approach in which concepts
from various � elds of physics and complex systems science are vital elements [5].

Trying to understand interacting Earth systems as a giant complex system using
only instrumental records is insuf� cient, since such measures cover only a very

Figure 6.1. Scheme of rich connections within main components of the Earth’s system.
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narrow window of the planet’ s history. The Earth is continuously experiencing
natural events such as geological and tectonic processes, climate change, and
biological and chemical activities. Although the instruments to record such events
were not available before the 17th century, various natural and complex formations,
such as stalagmites, marine and lake sediments, and trees, have recorded such events
in their structures as proxy records. Investigating these archives to reveal the hidden
preceding events helps us understand the dynamics and predict the oncoming
behavior of the associated natural events on the Earth. For this purpose, paleo-
climatology, a � eld of climate science that works to understand ancient climates
without direct measurement, has reached suf� cient maturity to reveal signi� cant
climate periods, such as glaciations and abrupt global temperature rises, by dating
and analyzing the proxies [6].

Whereas paleoclimate variations as derived from the geoscienti� c archives are
only estimates and contain a degree of uncertainty, the signi� cant climate periods of
the driving processes such as the Milankovich cycles can be determined with high
accuracy because the equations of motion for the dynamics of the Earth’ s orbit in
space can be solved with a reasonable approximation using Hamiltonian mechanics.
However, the celestial sign of objects in the solar system is, in general, a many-body
system in which the planets’ gravitational � elds mutually in� uence their orbits
around the Sun. Solving such a many-body problem (and even that of a three-body
system) is not simple and was at the forefront of science for a long time [7]. In this
spirit and in honor of the 60th birthday of the King of Sweden, Oscar II, in 1887, a
prize for solving the many-body problem was announced. The French mathema-
tician Henry Poincaré � nally won this prize with his seminal work on the three-body
system and discovering the chaotic nature of the planets’ orbits [8]. In this work, he
proved an important theorem that affects the recurring orbits of the interacting
objects in a celestial system and is also a fundamental property of many complex
dynamical systems: the now well-known recurrence theorem, which states that a
(conservative) system recurs in� nitely many times as closely as one wishes to its
initial state. The property of recurrence is not only of fundamental importance in the
study of dynamic systems; it is also a fundamental principle in Earth sciences at all
temporal and spatial scales.

6.2.2 Nonlinear concepts

The vigorous progress in exploring nonlinear dynamics in the 1980s and 1990s
opened new doors for a more appropriate analysis of complex nonlinear systems,
such as lasers, the human brain, power grids, and the Earth’s system [9]. Techniques
for estimating fundamental characteristics of nonlinear systems, such as fractal
dimension, Lyapunov exponents, Kolmogorov entropy, and Hurst exponents, were
developed and applied to various disciplines [10]. However, these methods are
mainly helpful in low-dimensional processes and are not appropriate for under-
standing the Earth’ s system from data.

Other essential concepts, such as recurrence plots [11, 12], synchronization [13],
wavelets [14], and complex networks [15], have been developed to explore dynamical
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and structural properties in high-dimensional spatiotemporal systems. They have
been proven to be very promising even for the study of the Earth’ s system. In the
following subsections, we describe basic nonlinear concepts and present some
paradigmatic applications in Earth sciences.

6.2.2.1 Multiscaling
Various Earth processes are assumed to be scale-invariant[4]. An essential law is the
size distribution of natural events, meaning that prominent events are less frequent
when compared to smaller ones. Deriving an adequate size distribution of natural
events would take into account the rarity and likelihood of a speci� c event. Hence,
one major challenge of studying the occurrence, frequency, and intensity of climate-
driven natural extremes and natural hazards is determining these events’ spatial and
temporal scaling to derive adequate risk estimates. One way to analyze the scaling of
natural hazards is to use the frequency–size distribution p x( ) (x stands, e.g., for
landslide area). For instance, p x( ) of landslides follows a power law probability
density function in an area with arbitrary dimensions independently of their source
mechanism (e.g., earthquake- or rainfall-induced):

�= Š � �Š Šp x x x( ) ( 1) (6.1)min
1

with � the power exponent, valid for �x x min [16].
Similarly, the famous Gutenberg–Richter power law [17, 18] scales the seismic

activity to assess earthquake hazards for different events magnitudes m. It states that
earthquake magnitudes m are distributed exponentially as

= Š�N a bMlog (6.2)m M

where �Nm M is the number of earthquakes with magnitude �m M , a is a constant,
and b is the scaling parameter. The scaling parameter b determines the relative
frequency of small and large earthquakes. The estimation of b is around 1.0, with
deviations up to 30% in seismically active regions [19]. A real example of this
particular case is presented in section 6.2.3.1.

Information about the Earth’s system’ s processes can be stored and perceived
differently at multiple scales. The information observed at one scale often cannot be
directly used as information at another. Scaling approaches address the changes at
the measurement scale and play an essential role in Earth sciences by providing
information at the scale of interest.

Determining scaling properties of geophysical variables provides an alternating
way to obtain information about the associated process. The processes with similar
statistical properties at different scales are said to be self-similar, which can be
described mathematically as [20]

� � � �= �Šx x( ) ( ) (6.3)

where x is the � ner spatial resolution (scale), � is the scaling exponent, � is the ratio
of the large resolution, � x to the small resolution x , and � is the geophysical
property or variable of interest. A � eld is said to be spatially scaling with respect to
the moment, q, if the following relationship holds [21]:
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�� �� �� ��� � ���( )E E ( ) (6.4)
q K q q( )

1

where K q( ) is the scaling exponent associated with the moment of order q. If the
exponent K q( ) is linear with regard to q, the process has simple scaling. On the other
hand, if the scaling exponents, or slopes, are a nonlinear function of q, then the
process is said to be multiscaling. This concept of scaling and multiscaling has been
used widely in many scienti� c � elds, including hydrology and ecology. For instance,
wavelet analysis can decompose high-resolution nonstationary spatial information
into nonstationary � elds of increasingly coarse spatial scales [22]. The wavelet and
the corresponding scaling function are a function to decompose spatial information
into directional components explained by the wavelet coef� cients.

6.2.2.2 Recurrence analysis
The seminal work of Poincaré in 1890 [8] played a central role in the qualitative
theory for nonlinear dynamics (see section 2.1). Poincaré presented a method that
provides a local and global analysis of nonlinear dynamical systems by the Poincaré
recurrence theorem and stability theory for � xed points and periodic orbits. This
theoretical � nding is compellingly con� rmed by the real world, where recurrences
can be observed in our daily life and across all scienti� c disciplines. Therefore, the
investigation of recurrences has attracted much attention, and several approaches
have been developed for this purpose.

Among the various methods for studying recurring processes, power spectrum
analysis is one of the best known and most widely used techniques for identifying
periodicities in time series [23]. Wavelet analysis reveals similar information, addition-
ally providing the change of the detected periods over time (see section 2.1). Coming
from the theory of dynamical systems and based on Poincaré’s recurrence theorem, the
recurrence plot(RP) is another fundamental approach that can be used to investigate
recurring features in time series and even in spatial data [11, 12]. In a given m-dimen-
sional phase space, two neighboring points are called recurrent if the distance between
their state vectors is closer than the threshold � . Formally, for a given trajectory xi

�5= ƒ �xi N( 1, , , )m , the recurrence matrix R is de� ned as

�
��

�
=

Š �x x
R

1, if

0, otherwise
(6.5)i j

i j
,

where · is a norm of the adopted phase space. The graphical representation of the
recurrence matrix R is the RP (� gure 6.2). RP of different dynamical behavior
represents different particular features (� gure 6.2). Such differences can be quanti-
� ed with the measures of recurrence quanti� cation analysis, such as determinism
(the fraction of recurrence points that form diagonal lines in the recurrence plot),
laminarity (the fraction of recurrence points that form vertical lines), and recurrence
rate (the percentage of recurrence points in a recurrence plot). These measures are
used to � nd changes in the dynamics of a process (e.g., in climate), to classify the
dynamics (e.g., random, chaotic, regular) [12], or to identify interrelationships and
coupling directions in coupled systems [24].
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6.2.2.3 Complex networks and event synchronization
Essential challenges in climatology are quantifying the spatial extent of climate
extremes and early forecasting procedures of their dynamical behavior. Such
forecasting relies predominantly on numerical models which solve physics-based
coupled systems of partial differential equations. Starting with Richardson in the
1920s, it has been a long way to the � rst successful prediction in 1950 and eventually
to today’s highly sophisticated general circulation and Earth system models. Despite
multiple efforts using these methods, their predictive power, especially for extreme
events, can be rather limited. A primary reason for this is that in particular long-
range interactions, called teleconnections, and their interaction with more regional
interactions may not be well represented or may even be absent in such models.

Therefore, a quite different approach has been suggested: a network-based
presentation of climate phenomena called climate networks. The main idea is to

Figure 6.2. (A) Time series representing switching between different dynamical regimes, from chaotic via
periodic to stochastic, each lasting 500 time steps. (B) A recurrence plot (RP) represents the recurrence of a
state at a given point in time (x-axis) at another point in time (y-axis). Different dynamics cause typical
recurrence patterns, which can be used to detect these changing dynamical behaviors. Continuous long
diagonal lines in the RP indicate the periodic window, shorter diagonals show the chaos, and single points
appear in the stochastic part.
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get additional information by capturing the evolving interactions of different
locations, regarded as nodes, through similarity measures, such as the Pearson
correlation, mutual information, or the Granger causality, from spatiotemporal
observational data. An important description of such similarity of strong events is
the event synchronizationapproach [25], inspired by Christiaan Huygens’ detection
of synchronization in the 17th century. Here, we consider the occurrence of extreme
events, such as rainfall, in a synchronized manner at different locations, even
faraway ones.

The � nal complex network is then represented by an adjacency matrix A, which
encodes the links between the nodes i and j as follows:

�
��

=A
j inonzero, if variability at node is similar (or synchronized) to node

0, otherwise
(6.6)i j,

The value of the elements of A represents the weight of the link obtained from
quantifying similarity (� gure 6.3).

Figure 6.3. The climate network framework as a tool for prediction. Observational data of physical quantities,
such as temperatures, are available at different geographical locations. These data can be used directly or via a
reanalysis (numerical weather model) which assimilates and maps them onto a regular grid. Thus, a time series
of the regarded physical quantity is available for each climate network node (observational site or reanalysis
grid point). Cooperativity between nodes can be detected from the similarity in the evolution of these time
series and translated into links connecting the corresponding nodes. The links or their strengths may change
with time. These nodes and their links constitute the evolving climate network represented by the adjacency
(connectivity) matrix A (equation (6.6)). The analysis of this network can enable early predictions of climate
phenomena and provide insights into the physical processes of the Earth’s system.
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There are various generalizations of this construction, particularly to emphasize
multilayer networks, which enable variables from different subsystems.

The reconstructed adjacency matrix A allows us to calculate standard network
measures such as degrees, clustering coef� cients, or betweenness and to identify
teleconnections. It has been shown recently that climate networks provide ideal tools
for exploring even large amounts of climate data to uncover spatiotemporal
patterns, leading to new physical insights into the climate system [1]. Moreover,
they have a strong predictive potential; that is, they enable the development of new
forecasting methods. Examples of up-and-coming applications are given in sections
3.3–3.5.

6.2.3 Applications of nonlinear dynamics in the Earth’s system

Vigorous progress in nonlinear science contributed to detecting, attributing, and
understanding the Earth’ s system, reducing uncertainties, and projecting future
climate changes. In this section, we discuss some signi� cant contributions of
nonlinear physics in Earth system sciences.

6.2.3.1 Earthquakes and the Gutenberg–Richter law
A proper � tting of the power law is essential to study most natural hazards,
particularly earthquakes (equation (6.1)). The Gutenberg–Richter law (equation
(6.2)) represents scaling in earthquakes, as power law distribution makes it scale-
invariant. An example of the scale parameter b for central California for 20 years
(2001–20) is illustrated in � gure 6.4. The California region has a b of 1.0, which is as
per the global average, meaning that central California has the same relative

Figure 6.4. Frequency–magnitude distribution for earthquakes in central California between 2001 and 2020.
The red line shows a � t to the cumulative frequency and has a slope (b-value) of 1.0. The magnitude cutoff,

=M 3.4,c is used for estimating the scaling parameter b.

EPS Grand Challenges

6-10



frequency of small and large earthquakes. However, the magnitude threshold
parameter Mc must be selectively applied above crossover magnitude for larger
earthquakes with signi� cant seismic moments [26]. The Gutenberg–Richter law
accurately describes the shallow seismicity. However, it is not the only scaling law
for all levels of earthquake events; the distribution of deeper earthquakes was
observed to follow a bimodal (multiscaling) pattern [27].

It is also crucial to accurately estimate scaling parameter b (equation (6.2)) from
the earthquake events to characterize the seismicity activity (see section 2.1)
sensitively. There is an inverse correlation between b and the differential stress,
which was revolutionary in that b can act as an indicator of stress accumulated
around the fault volume [28]. This observation was used in the study done before
and after the vast 2011 Tohoku-Oki earthquake with a high slip area, where an
increase in b is observed as a large amount of stress was released [29]. Another use
for this observation is studying the structural anomalies in the crust and identifying
the volumes of magma in an active volcano. A study performed at two active
volcanoes [30], Mt. St. Helens and Mt. Spurr, shows a relatively high b (� 1.3) due to
the presence of material heterogeneity and high thermal gradient. This high b is why
these volcanoes are less likely to host large earthquakes but frequent small ones. A
typical intraplate b is around 0.8, making intraplate regions prone to large earth-
quakes over a short recurrence time. However, the scaling parameter b is not the
perfect parameter to measure seismicity at all magnitude scales. The tail of the

>N Mlog ( )m versus M relation holds for only a certain range of magnitudes. A
nonlinear � t is a better approximation for smaller ( �M 3.4c ) and larger ( �M 7f )
magnitudes. A reason for the deviation from the power law for earthquakes smaller
than �M 3.4c (� gure 6.4) is the incompleteness of catalogs. For large earthquakes, a
reason is the saturation of the magnitude scale and the long recurrence time; they are
missing from the catalogs because they are often too short.

A high scaling parameter b indicates a lower chance of observing signi� cant
seismicity while the frequency of small earthquakes is high. However, smaller-
magnitude events are observed much less often than indicated by b due to
insuf� cient seismic network coverage.

6.2.3.2 Recurrence plot application
Recurrence is a fundamental principle in Earth sciences at all temporal and spatial
scales, from the key principle of the doctrine of uniformity, over the rock cycle,
glaciation cycles, and active geysers, to alternating sediment layers, to mention
only a few. One crucial phenomenon with complex recurrence patterns is climate.
One of the primary drivers of climate is solar insolation, modulated by mutual
variations of the Earth’ s orbit around the Sun and the tilt of the Earth’ s axis,
which are responsible for seasons, changes in global temperature, and glaciations.
This in� uence was discovered in the � rst half of the 20th century by investigating
annually layered lake sediments [31] and considering the Earth’ s orbital param-
eters [32].

Recurrence plots (see section 2.2) provide a powerful framework to study the
dynamics of the climate by their recurrence properties. As an application, the
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dynamics of the Cenozoic climate will be investigated by recurrences properties in a
selected paleoclimate proxy record. Such studies are essential to advance our
understanding of the past and will help to improve climate models to better forecast
future climate change and its impacts, as well as increasing our understanding of
climate dynamics.

Calcareous lake sediments, speleothems, and benthic foraminifera store environ-
mental conditions by changing their geochemical and petrographic composition.
The study of stable isotopes is an active � eld to derive past environmental and
climatic conditions. For example, the temperature-dependent fractionation of oxy-
gen isotopes is the key to reconstructing global seawater temperatures and ocean
circulation by using planktonic and benthic foraminifera. Ongoing deep ocean
drilling programs and novel quantitative methods such as clumped isotope ther-
mometry provide new insights with improved quanti� cation, increasing temporal
resolution, and ever-smaller time uncertainties. The recently developed temperature
reference curve for the Cenozoic [33] is an example with a temporal resolution of up
to 2000 years and covering 66 million years. This period is crucial because it provides
an analog of future greenhouse climate and how (and which) regime shifts in large-
scale atmospheric and ocean circulation can be expected in a warming world [34].
The outstanding high resolution of this record allows study and comparison of
recurrence properties of selected time intervals. The recurrence plot indicates the
different climate regimes of hothouse, warmhouse, coolhouse, and icehouse by their
very distinct recurrence pattern (� gure 6.5). During the Miocene (18–14 Ma ago),
the climate was in a warmer state more similar to the warmhouse than the
coolhouse, visible by some recurrences linking this period to the late Eocene. The
� ne-scale pattern of the recurrence plot reveals more details, such as the change from
the 41-ka cycles to 100-ka Milankovich cycles of glaciation during the mid-
Pleistocene transition.

Recurrence analysis of climate time series indicates different dynamical regimes,
such as chaotic or predictable dynamics, thus enabling detection of critical
transitions between different climate periods.

6.2.3.3 Extreme rainfall teleconnections and monsoon prediction
The Indian summer monsoon is an intense rainy season lasting from June to
October. The monsoon delivers more than 70% of the country’s annual rainfall,
which is India’s primary source of freshwater. Although the rainy season happens
every year, the monsoon onset and withdrawal dates vary within a month from year
to year. Such variability strongly affects the life and property of more than a billion
people in India, especially those living in rural areas and working in the agricultural
sector, which employs 70% of the entire population. So far, only Kerala in South
India receives an of� cial monsoon forecast two weeks in advance, while the other 28
states rely on the operational weather forecast of about � ve days [35]. A much better
forecast has been recently reached by combining two nonlinear concepts: complex
climate networks and a tipping element approach.

In the � rst step, from rainfall data from the Asian Precipitation Highly Resolved
Observational Data Integration Towards the Evaluation of Water Resources
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(APHRODITE) and the high-resolution satellite product Tropical Rainfall
Measurement Mission (TRMM) 3B42 dataset, complex networks were retrieved
via the event synchronization technique (see section 2.3). This exploratory network-
based analysis of extreme rainfall across the Indian subcontinent enabled for the � rst
time the identi� cation of critical geographical domains displaying far-reaching links,
in� uencing distant grid points [36]. In particular, North Pakistan and the Eastern
Ghats turn out to be crucial for the transport of precipitation across the
subcontinent.

In the second step, a tipping elements approach of the measured daily mean air
temperature and the relative humidity at these two sensitive regions allowed us to
uncover the critical nature of the spatiotemporal transition to the monsoon. It was
especially found that the temporal evolution of the daily mean air temperature and
the relative humidity exhibits critical thresholds on the eve of the monsoon. A highly
developed instability occurring in these regions creates the conditions necessary for
spatially organized and temporally sustained monsoon rainfall.

Based on this knowledge, a scheme was developed for forecasting the upcoming
monsoon onset in the central part of India 40 days in advance, thus considerably
improving the time horizon of conventional forecasts. The new scheme not only has
proven its worth (73% of onset predictions have been correct) in retrospect (for the

Figure 6.5. RP of a paleoclimate time series. (A) Paleoclimate variation indicated by oxygen isotope
measurements from marine sediments (CENOGRID). Lower values correspond to a warmer global climate.
(B) The RP indicates the different climate regimes of hothouse, warmhouse, coolhouse, and icehouse by their
very distinct recurrence pattern. During the Miocene (18–14 Ma ago), the climate was in a warmer state more
similar to the warmhouse than the coolhouse, visible by some recurrences linking this period to the late Eocene
(marked by the dashed box). (C) The � ne-scale pattern of the RP reveals more details, such as the change from
the 41-ka cycles to 100-ka cycles of glaciation during the mid-Pleistocene transition.
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years 1951–2015) but also has already been shown to be successful in predicting
future monsoons � ve years in a row since its introduction in 2016. The methodology
appears to be robust under climate change and has proven its skill also under the
extreme conditions of 2016, 2018, and 2019.

Further successful applications of this network-based concept are ElNiño forecasts
beyond the spring barrier, predicting droughts in the central Amazon 12–18months in
advance, and forecasting extreme rainfall in the Eastern Central Andes [37].

Thus, a network-based analysis of climate data can provide predictive power for
mitigating the global warming crisis and societal challenges.

6.2.3.4 Understanding landslide distributions
As explained in section 6.2.2.1, successfully � tting a global power law distribution
(equation (6.1)) to landslides would help us to understand whether we lack informa-
tion in hazard and risk models. However, the distribution of spatial landslides follows
a power law distribution. Just as in the case of the Gutenberg–Richter law, the power
exponent is valid to a minimum value (equation (6.1)) [16], and the rollover below the
minimum is found in two different forms: (1) the double Pareto distribution and (2) the
inverse Gamma distribution according to different studies [38, 39]. Like other
universal scaling laws [40], it is expected to have a universal power exponent for the
landslide events. However, a lack of data makes studying the problem impossible at a
better resolution, especially at the function’ s tail [38, 39]. Most studies rely primarily
on landslide inventories collected after a signi� cant landslide triggering event, such as
the 1994Northridge earthquake (M W 6.4). Landslides have also been found to exhibit
temporal scaling or clustering besides spatial and geometric ones. Although some
studies suggest a global power exponent � = 2.3 ± 0.6, the physical process is not
known to implement a functional probabilistic multihazard assessment [41].

Besides the power law–based approximation models, ample practice has offered
linear solutions to study natural hazards, making a nonlinear application redundant.
An example is Newmark’s sliding block analysis. It estimates the displacement
potential of hillslopes under seismic loading (i.e., acceleration). This hypothetical
displacement aims to indicate the likelihood of failure under seismic loading as a
function of hillslope inclination and seismic acceleration. For example, landslides
related to the 2016 Kumamoto earthquake (M W 7.1) caused signi� cant damage,
especially to infrastructure such as highways (� gure 6.6(A)). Although landslide
locations correlate well with the seismic waveforms based on a physics-based ground
motion model [42], the Newmark’ s distances highlight particularly elevated gra-
dients in the landscape (� gure 6.6(B)).

Rainfall decreases the slope stability by altering cohesion, elevating the landslide
susceptibility in most cases. In some other cases, rainfall could also mobilize the
super� cial surface material leading to the debris � ows. However, in contrast to an
earthquake, rainfall is not introducing a direct force on the hillslopes to estimate
rainfall impact on landslides. Hence, most of the time, statistical methods are
applied to forecast rainfall-induced landslides. One standard tool is to use statisti-
cally derived rainfall intensity–duration thresholds above which landslides are
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triggered. The logic behind is that high-intensity rainfall triggers landslides and
moderate intensity, but long-duration events would increase the landslide suscept-
ibility. Therefore, several spatial classi� cation models are developed to try to relate
landslide activity to rainfall distribution.

Figure 6.6. (A) Example of a cut slope failure by the Oita Expressway following the 2016 Kumamoto
earthquake (M W 7.1). The photo is taken from Dave Petley’s landslide blog (https://blogs.agu.org/land-
slideblog/2016/04/18/kumamoto-Earthquake-1/). (B) Newmark’s displacement of the 2016 Kumamoto earth-
quake (M W 7.1) in Kyushu, Japan (UTM-52). In certain regions, the elevated displacement correlates well with
the mapped landslides, while in some others, it is relatively poor. The concentration of extreme precipitation
streamlines during (C) June and July (JJ), and (D) August to November (ASON), normalized by cumulative
above 95% extreme rainfall for the same period between 1998 and 2015 based on TRMM (Tropical Rainfall
Measurement Mission) rainfall estimates. (E) Normalized rainfall-triggered spatial landslide density -weighted
by log-transformed landslide volumes calculated from an inventory of 4744 events and smoothed by kernel
density estimation onto a 5 × 5 km grid by [44]; white areas have no data.
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