日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Framework of evolutionary algorithm for investigation of influential nodes in complex networks

Liu, Y., Wang, X., & Kurths, J. (2019). Framework of evolutionary algorithm for investigation of influential nodes in complex networks. IEEE Transactions on Evolutionary Computation, 23(6), 1049-1063. doi:10.1109/TEVC.2019.2901012.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
8495.pdf (出版社版), 7MB
 
ファイルのパーマリンク:
-
ファイル名:
8495.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Liu, Yang1, 著者              
Wang, X.2, 著者
Kurths, Jürgen1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: There are many target methods that are efficient to tackle the robustness and immunization problem, in particular, to identify the most influential nodes in a certain complex network. Unfortunately, owing to the diversity of networks, none of them could be accounted as a universal approach that works well in a wide variety of networks. Hence, in this paper, from a percolation perspective, we connect the immunization and robustness problem with an evolutionary algorithm, i.e., a framework of an evolutionary algorithm for investigation of influential nodes in complex networks, in which we have developed procedures of selection, mutation, and initialization of population as well as maintaining the diversity of population. To validate the performance of the proposed framework, we conduct intensive experiments on a large number of networks and compare it to several state-of-the-art strategies. The results demonstrate that the proposed method has significant advantages over others, especially on empirical networks in most of which our method has over 10% advantages of both optimal immunization threshold and average giant fraction, even against the most excellent existing strategies. Additionally, our discussion reveals that there might be better solutions with various initial methods.

資料詳細

表示:
非表示:
言語:
 日付: 2019
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1109/TEVC.2019.2901012
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8495
Organisational keyword: RD4 - Complexity Science
Working Group: Network- and machine-learning-based prediction of extreme events
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: IEEE Transactions on Evolutionary Computation
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 23 (6) 通巻号: - 開始・終了ページ: 1049 - 1063 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/IEEE-transactions-evolutionary-computation