日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Generic network sparsification via hybrid edge sampling

Su, Z., Kurths, J., & Meyerhenke, H. (2025). Generic network sparsification via hybrid edge sampling. Journal of the Franklin Institute, 362(1):. doi:10.1016/j.jfranklin.2024.107404.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
30710oa.pdf (出版社版), 2MB
ファイル名:
30710oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:
非表示:
説明:
Code

作成者

表示:
非表示:
 作成者:
Su, Zhen1, 著者              
Kurths, Jürgen1, 著者              
Meyerhenke, Henning2, 著者
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Network (or graph) sparsification benefits downstream graph mining tasks. Finding a sparsified subgraph similar to the original graph is, however, challenging due to the requirement of preserving various (or at least representative) network properties. In this paper, we propose a general hybrid edge sampling scheme named LOGA, as the combination of the Local-filtering-based Random Edge sampling (LRE) (Hamann et al., 2016) and the Game-theoretic Sparsification with Tolerance (GST) (Su et al., 2022). LOGA fully utilizes the advantages of GST — in preserving complex structural properties by preserving local node properties in expectation – and LRE – in preserving the connectivity of a given network. Specifically, we first prove the existence of multiple equilibria in GST. This insight leads us to propose LOGA and its variant LOGA by refining GST. LOGA is obtained by regarding LRE as an empirically good initializer for GST, while LOGA is obtained by further including a constrained update for GST. In this way, LOGA/LOGA generalize the work on GST to graphs with weights and different densities, without increasing the asymptotic time complexity. Extensive experiments on 26 weighted and unweighted networks with different densities demonstrate that LOGA performs best for all 26 instances, i.e., they preserve representative network properties better than state-of-the-art sampling methods alone.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2024-11-102024-11-202025-01-01
 出版の状態: Finally published
 ページ: 13
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.jfranklin.2024.107404
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
MDB-ID: No MDB - stored outside PIK (see locators/paper)
Research topic keyword: Complex Networks
Model / method: Game Theory
OATYPE: Hybrid - DEAL Elsevier
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Journal of the Franklin Institute
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 362 (1) 通巻号: 107404 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journal-franklin-institute
Publisher: Elsevier