Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics

Tupikina, L., Molkenthin, N., López, C., Hernández-García, E., Marwan, N., Kurths, J. (2016): Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics. - PloS ONE, 11, 4, e0153703.
https://doi.org/10.1371/journal.pone.0153703

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
7210oa.pdf (Verlagsversion), 2MB
Name:
7210oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Tupikina, Liubov1, Autor              
Molkenthin, N.2, Autor
López, C.2, Autor
Hernández-García, E.2, Autor
Marwan, Norbert1, Autor              
Kurths, Jürgen1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network’s structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1371/journal.pone.0153703
PIKDOMAIN: Transdisciplinary Concepts & Methods - Research Domain IV
eDoc: 7210
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Complex Networks
Research topic keyword: Atmosphere
Model / method: Nonlinear Data Analysis
Organisational keyword: RD4 - Complexity Science
Working Group: Network- and machine-learning-based prediction of extreme events
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PloS ONE
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, OA
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 11 (4) Artikelnummer: e0153703 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/r1311121