日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Optimal design of hydrometric station networks based on complex network analysis

Agarwal, A., Marwan, N., Maheswaran, R., Öztürk, U., Kurths, J., & Merz, B. (2020). Optimal design of hydrometric station networks based on complex network analysis. Hydrology and Earth System Sciences, 24(5), 2235-2251. doi:10.5194/hess-24-2235-2020.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
24075oa.pdf (出版社版), 4MB
ファイル名:
24075oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Agarwal, Ankit1, 著者              
Marwan, Norbert1, 著者              
Maheswaran, Rathinasamy 2, 著者
Öztürk, Ugur2, 著者
Kurths, Jürgen1, 著者              
Merz, Bruno2, 著者
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.

資料詳細

表示:
非表示:
言語:
 日付: 2020-04-232020
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.5194/hess-24-2235-2020
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
MDB-ID: yes - 3042
Research topic keyword: Complex Networks
Research topic keyword: Weather
Model / method: Nonlinear Data Analysis
Regional keyword: Germany
Working Group: Development of advanced time series analysis techniques
Working Group: Network- and machine-learning-based prediction of extreme events
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Hydrology and Earth System Sciences
種別: 学術雑誌, SCI, Scopus, p3, oa
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 24 (5) 通巻号: - 開始・終了ページ: 2235 - 2251 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals208
Publisher: Copernicus