日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Edge directionality properties in complex spherical networks

Wolf, F., Kirsch, C., & Donner, R. V. (2019). Edge directionality properties in complex spherical networks. Physical Review E, 99:. doi:10.1103/PhysRevE.99.012301.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
8283oa.pdf (ポストプリント), 5MB
ファイル名:
8283oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Wolf, Frederik1, 著者              
Kirsch, Catrin1, 著者              
Donner, Reik V.1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Spatially embedded networks have attracted increasing attention in the past decade. In this context, network characteristics have been introduced which explicitly take spatial information into account. Among others, edge directionality properties have recently gained particular interest. In this work, we investigate the applicability of mean edge direction, anisotropy, and local mean angle as geometric characteristics in complex spherical networks. By studying these measures, both analytically and numerically, we demonstrate the existence of a systematic bias in spatial networks where individual nodes represent different shares on a spherical surface, and we describe a strategy for correcting for this effect. Moreover, we illustrate the application of the mentioned edge directionality properties to different examples of real-world spatial networks in spherical geometry (with or without the geometric correction depending on each specific case), including functional climate networks, transportation, and trade networks. In climate networks, our approach highlights relevant patterns, such as large-scale circulation cells, the El Niño–Southern Oscillation, and the Atlantic Niño. In an air transportation network, we are able to characterize distinct air transportation zones, while we confirm the important role of the European Union for the global economy by identifying convergent edge directionality patterns in the world trade network.

資料詳細

表示:
非表示:
言語:
 日付: 2019
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1103/PhysRevE.99.012301
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8283
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Nonlinear Data Analysis
Regional keyword: Global
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
Working Group: Network- and machine-learning-based prediction of extreme events
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Physical Review E
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 99 通巻号: 012301 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/150218