Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A machine learning approach to predicting dynamical observables from network structure

Rodrigues, F. A., Peron, T., Connaughton, C., Kurths, J., Moreno, Y. (2025): A machine learning approach to predicting dynamical observables from network structure. - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 481, 2306, 20240435.
https://doi.org/10.1098/rspa.2024.0435

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
rodrigues-et-al-2025-a-machine-learning-approach-to-predicting-dynamical-observables-from-network-structure.pdf (Verlagsversion), 6MB
Name:
rodrigues-et-al-2025-a-machine-learning-approach-to-predicting-dynamical-observables-from-network-structure.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Rodrigues, Francisco A.1, Autor
Peron, Thomas1, Autor
Connaughton, Colm1, Autor
Kurths, Jürgen2, Autor              
Moreno, Yamir1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Estimating the outcome of a given dynamical process from structural features is a key unsolved challenge in network science. This goal is hampered by difficulties associated with nonlinearities, correlations and feedbacks between the structure and dynamics of complex systems. In this work, we develop an approach based on machine learning algorithms that provides an important step towards understanding the relationship between the structure and dynamics of networks. In particular, it allows us to estimate from the network structure the outbreak size of a disease starting from a single node, as well as the degree of synchronicity of a system made up of Kuramoto oscillators. We show which topological features of the network are key for this estimation and provide a ranking of the importance of network metrics with much higher accuracy than previously done. For epidemic propagation, the k-core plays a fundamental role, while for synchronization, the betweenness centrality and accessibility are the measures most related to the state of an oscillator. For all the networks, we find that random forests can predict the outbreak size or synchronization state with high accuracy, indicating that the network structure plays a fundamental role in the spreading process. Our approach is general and can be applied to almost any dynamic process running on complex networks. Also, our work is an important step towards applying machine learning methods to unravel dynamical patterns that emerge in complex networked systems.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2025-02-042025-02-04
 Publikationsstatus: Final veröffentlicht
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1098/rspa.2024.0435
MDB-ID: No MDB - stored outside PIK (see locators/paper)
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
OATYPE: Hybrid Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 481 (2306) Artikelnummer: 20240435 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/201802091
Publisher: The Royal Society