Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Most probable trajectories of a birhythmic oscillator under random perturbations

Zhang, W., Xu, W., Tang, Y., Kurths, J. (2024): Most probable trajectories of a birhythmic oscillator under random perturbations. - Chaos, 34, 12, 123105.
https://doi.org/10.1063/5.0229131

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
zhang_2024_123105_1_5.0229131.pdf (Verlagsversion), 10MB
 
Datei-Permalink:
-
Name:
zhang_2024_123105_1_5.0229131.pdf
Beschreibung:
-
Sichtbarkeit:
Privat (Embargo bis 2025-12-10)
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zhang, Wenting1, Autor              
Xu, Wei2, Autor
Tang, Yaning2, Autor
Kurths, Jürgen1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This study investigates the most probable trajectories of a birhythmic oscillator under stochastic perturbations. The distinctive feature of the birhythmic oscillator is the coexistence of two stable limit cycles with different amplitudes and frequencies, separated by an unstable limit cycle. The path integral method was utilized to compute the instantaneous probability density. Based on the theory of most probable dynamics, by maximizing the probability density function, we present the time series of the most probable trajectories starting from different initial states. Furthermore, we conducted a detailed analysis of the noise-induced transitions between the two stable limit cycles under different parameter conditions. This approach enables us to understand and track the most probable escape time and specific most probable trajectories as the system transitions from the basin of attraction of one stable limit cycle to another. This work visualizes the most probable trajectories in stochastic systems and provides an innovative solution to the complex problem of noise-induced transitions between two stable limit cycles. Our research aims to provide a new perspective for studying complex stochastic dynamical systems.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-12-022024-12-02
 Publikationsstatus: Final veröffentlicht
 Seiten: 17
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/5.0229131
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 34 (12) Artikelnummer: 123105 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)