Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models

Zaherpour, J., Mount, N., Gosling, S. N., Dankers, R., Eisner, S., Gerten, D., Liu, X., Masaki, Y., Müller Schmied, H., Tang, Q., Wada, Y. (2019): Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models. - Environmental Modelling and Software, 114, 112-128.
https://doi.org/10.1016/j.envsoft.2019.01.003

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
22997oa.pdf (Postprint), 2MB
Name:
22997oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zaherpour, J.1, Autor
Mount, N.1, Autor
Gosling, S. N.1, Autor
Dankers, R.1, Autor
Eisner, S.1, Autor
Gerten, Dieter2, Autor              
Liu, X.1, Autor
Masaki, Y.1, Autor
Müller Schmied, H.1, Autor
Tang, Q.1, Autor
Wada, Y.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This study presents a novel application of machine learning to deliver optimised, multi-model combinations (MMCs) of Global Hydrological Model (GHM) simulations. We exemplify the approach using runoff simulations from five GHMs across 40 large global catchments. The benchmarked, median performance gain of the MMC solutions is 45% compared to the best performing GHM and exceeds 100% when compared to the ensemble mean (EM). The performance gain offered by MMC suggests that future multi-model applications consider reporting MMCs, alongside the EM and intermodal range, to provide end-users of GHM ensembles with a better contextualised estimate of runoff. Importantly, the study highlights the difficulty of interpreting complex, non-linear MMC solutions in physical terms. This indicates that a pragmatic approach to future MMC studies based on machine learning methods is required, in which the allowable solution complexity is carefully constrained.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.envsoft.2019.01.003
PIKDOMAIN: RD1 - Earth System Analysis
eDoc: 8407
Research topic keyword: Freshwater
Model / method: LPJmL
Regional keyword: Global
Organisational keyword: RD1 - Earth System Analysis
Working Group: Terrestrial Safe Operating Space
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Environmental Modelling and Software
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 114 Artikelnummer: - Start- / Endseite: 112 - 128 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals127