Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Harnessing human and machine intelligence for planetary-level climate action

Debnath, R., Creutzig, F., Sovacool, B. K., Shuckburgh, E. (2023): Harnessing human and machine intelligence for planetary-level climate action. - npj Climate Action, 2, 1, 20.
https://doi.org/10.1038/s44168-023-00056-3

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Debnath, R.1, Autor
Creutzig, Felix, Autor
Sovacool, B. K., Autor
Shuckburgh, E., Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The ongoing global race for bigger and better artificial intelligence (AI) systems is expected to have a profound societal and environmental impact by altering job markets, disrupting business models, and enabling new governance and societal welfare structures that can affect global consensus for climate action pathways. However, the current AI systems are trained on biased datasets that could destabilize political agencies impacting climate change mitigation and adaptation decisions and compromise social stability, potentially leading to societal tipping events. Thus, the appropriate design of a less biased AI system that reflects both direct and indirect effects on societies and planetary challenges is a question of paramount importance. In this paper, we tackle the question of data-centric knowledge generation for climate action in ways that minimize biased AI. We argue for the need to co-align a less biased AI with an epistemic web on planetary health challenges for more trustworthy decision-making. A human-in-the-loop AI can be designed to align with three goals. First, it can contribute to a planetary epistemic web that supports climate action. Second, it can directly enable mitigation and adaptation interventions through knowledge of social tipping elements. Finally, it can reduce the data injustices associated with AI pretraining datasets.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2023
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s44168-023-00056-3
BibTex Citekey: RN925
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: npj Climate Action
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 2 (1) Artikelnummer: - Start- / Endseite: 20 Identifikator: ISSN: 2731-9814 (Electronic) 2731-9814 (Linking)
PIKDOMAIN: RD5 - Climate Economics and Policy - MCC Berlin
Organisational keyword: RD5 - Climate Economics and Policy - MCC Berlin
Working Group: Cities: Data Science and Sustainable Planning