Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Dirac-Bianconi Graph Neural Networks - Enabling Non-Diffusive Long-Range Graph Predictions

Nauck, C., Gorantla, R., Lindner, M., Schürholt, K., Mey, A. S. J. S., Hellmann, F. (2024): Dirac-Bianconi Graph Neural Networks - Enabling Non-Diffusive Long-Range Graph Predictions, (Proceedings of Machine Learning Research ; 251).

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Nauck_DBGNN-16.pdf (beliebiger Volltext), 5MB
Name:
Nauck_DBGNN-16.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://openreview.net/forum?id=mZzE0xh1QW (Verlagsversion)
Beschreibung:
-
externe Referenz:
https://doi.org/10.48550/arXiv.2407.12419 (Preprint)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Nauck, Christian1, Autor              
Gorantla, Rohan 2, Autor
Lindner, Michael1, Autor              
Schürholt, Konstantin 2, Autor
Mey, Antonia S. J. S. 2, Autor
Hellmann, Frank1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The geometry of a graph is encoded in dynamical processes on the graph. Many graph neural network (GNN) architectures are inspired by such dynamical systems, typically based on the graph Laplacian. Here, we introduce Dirac--Bianconi GNNs (DBGNNs), which are based on the topological Dirac equation recently proposed by Bianconi. Based on the graph Laplacian, we demonstrate that DBGNNs explore the geometry of the graph in a fundamentally different way than conventional message passing neural networks (MPNNs). While regular MPNNs propagate features diffusively, analogous to the heat equation, DBGNNs allow for coherent long-range propagation. Experimental results showcase the superior performance of DBGNNs over existing conventional MPNNs for long-range predictions of power grid stability and peptide properties. This study highlights the effectiveness of DBGNNs in capturing intricate graph dynamics, providing notable advancements in GNN architectures.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-07-232024-06-182024-08-21
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Dynamics, stability and resilience of complex hybrid infrastructure networks
Research topic keyword: Energy
Model / method: Machine Learning
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of Machine Learning Research
Genre der Quelle: Reihe
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 251 Artikelnummer: - Start- / Endseite: - Identifikator: -