日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Hybrid Neural Adaptive Control for Practical Tracking of Markovian Switching Networks

Hu, B., Yu, X., Guan, Z.-H., Kurths, J., & Chen, G. (2021). Hybrid Neural Adaptive Control for Practical Tracking of Markovian Switching Networks. IEEE Transactions on Neural Networks and Learning Systems, 32(5), 2157-2168. doi:10.1109/TNNLS.2020.3001009.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Hu, Bin1, 著者
Yu, Xinghuo1, 著者
Guan, Zhi-Hong1, 著者
Kurths, Jürgen2, 著者              
Chen, Guanrong1, 著者
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: While neural adaptive control is widely used for dealing with continuous- or discrete-time dynamical systems, less is known about its mechanism and performance in hybrid dynamical systems. This article develops analytical tools to investigate the neural adaptive tracking control of the hybrid Markovian switching networks with heterogeneous nonlinear dynamics and randomly switched topologies. A gradient-descent adaptation law built on neural networks (NNs) is presented for efficient distributed adaptive control. It is shown that the proposed control scheme can guarantee a stable closed-loop error system for any positive control gain and tuning gain. The tracking error is demonstrated to be practically uniformly exponentially stable with a threshold in the mean-square sense. This study further reveals how the topological structure affects the NN function, by measuring the influence of the switched topologies on the learning performance.

資料詳細

表示:
非表示:
言語:
 日付: 2021-06-22
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1109/TNNLS.2020.3001009
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: IEEE Transactions on Neural Networks and Learning Systems
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 32 (5) 通巻号: - 開始・終了ページ: 2157 - 2168 識別子(ISBN, ISSN, DOIなど): Publisher: Institute of Electrical and Electronics Engineers (IEEE)
その他: 2162-237X
ISSN: 2162-237X
CoNE: https://publications.pik-potsdam.de/cone/journals/resource/IEEE-transactions-on-neural-networks-and-learning-systems