日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Adaptive dynamical networks

Berner, R., Gross, T., Kuehn, C., Kurths, J., & Yanchuk, S. (2023). Adaptive dynamical networks. Physics Reports, 1031, 1-59. doi:10.1016/j.physrep.2023.08.001.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Berner, Rico1, 著者
Gross, Thilo1, 著者
Kuehn, Christian1, 著者
Kurths, Jürgen2, 著者              
Yanchuk, Serhiy2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: It is a fundamental challenge to understand how the function of a network is related to its structural organization. Adaptive dynamical networks represent a broad class of systems that can change their connectivity over time depending on their dynamical state. The most important feature of such systems is that their function depends on their structure and vice versa. While the properties of static networks have been extensively investigated in the past, the study of adaptive networks is much more challenging. Moreover, adaptive dynamical networks are of tremendous importance for various application fields, in particular, for the models for neuronal synaptic plasticity, adaptive networks in chemical, epidemic, biological, transport, and social systems, to name a few. In this review, we provide a detailed description of adaptive dynamical networks, show their applications in various areas of research, highlight their dynamical features and describe the arising dynamical phenomena, and give an overview of the available mathematical methods developed for understanding adaptive dynamical networks.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2023-09-042023-08-10
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.physrep.2023.08.001
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
PIKDOMAIN: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Physics Reports
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 1031 通巻号: - 開始・終了ページ: 1 - 59 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/physics-reports
Publisher: Elsevier