English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Speleothem growth and stable carbon isotopes as proxies of the presence and thermodynamical state of glaciers compared to modelled glacier evolution in the Alps

Skiba, V., Jouvet, G., Marwan, N., Spötl, C., Fohlmeister, J. (2023): Speleothem growth and stable carbon isotopes as proxies of the presence and thermodynamical state of glaciers compared to modelled glacier evolution in the Alps. - Quaternary Science Reviews, 322, 108403.
https://doi.org/10.1016/j.quascirev.2023.108403

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Skiba, Vanessa1, Author              
Jouvet, Guillaume2, Author
Marwan, Norbert1, Author              
Spötl, Christoph2, Author
Fohlmeister, Jens2, Author
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: In recent years, glacier modelling proved to be an essential tool for simulating Quaternary glacier evolution in the European Alps. Yet, only sparse empirical data mostly concentrated around the Last Glacial Maximum (LGM) is available to validate these simulations. On the other hand, speleothems from the Alps are a widespread palaeoclimate archive. They provide stable carbon isotope records, which can inform about soil and vegetation conditions above a cave site but also potentially about the lack of soil during times of glacier coverage. In addition, speleothem growth in cold, high-elevation cave sites during glacials are a strong indicator of temperatures in the soil-karst-cave system above the freezing point, which is only likely to occur if the cave is covered by a warm-based glacier. Here we use existing speleothem data (growth histories and stable carbon isotopes) from Alpine caves to infer soil coverage (i.e. glacier absence) and thermodynamical states of the glaciers during the last glacial cycle and to statistically assess the compatibility with modelled glacier reconstructions. We compare data from multiple cave sites located at different elevations (870–2512 m a.s.l.) with recent glacier evolution simulations. We find a general agreement between speleothem-derived soil presence or absence and modelled glacier coverage. However, speleothem data provide evidence of surface temperatures above freezing point if covered by a glacier, which is not fully reproduced by the simulations. Our work demonstrates the unique value of speleothem-based reconstructions as proxies to assess the performance of palaeo-ice flow models in a transient manner, whereas only maximum glacier state was considered before due to lack of data.

Details

show
hide
Language(s): eng - English
 Dates: 2023-11-012023-11-222023-12-15
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.quascirev.2023.108403
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
Research topic keyword: Paleoclimate
Regional keyword: Europe
Model / method: Quantitative Methods
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Quaternary Science Reviews
Source Genre: Journal, SCI, Scopus, p3
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 322 Sequence Number: 108403 Start / End Page: - Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals418
Publisher: Elsevier