English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Online Distributed ADMM Algorithm With RLS-Based Multitask Graph Filter Models

Lai, Y., Chen, F., Feng, M., Kurths, J. (2022): Online Distributed ADMM Algorithm With RLS-Based Multitask Graph Filter Models. - IEEE Transactions on Network Science and Engineering, 9, 6, 4115-4128.
https://doi.org/10.1109/TNSE.2022.3195876

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Lai, Yingcheng1, Author
Chen, Feng1, Author
Feng, Minyu1, Author
Kurths, Jürgen2, Author              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: This article establishes a multitask graph filter model based on the recursive least square (RLS) method and proposes an online distributed alternating direction method of multipliers (ODADMM) algorithm. We are interested in the time-varying graph signal, i.e., the graph filter is estimated from streaming data. Considering that current popular graph shift operators' energy can not be preserved, which will lead to slow estimation speed, so the RLS method is adopted in graph filters (GFs) to improve the convergence rate. Besides, a multitask GFs model is proposed for node-variant GFs, where each vertex cooperates with neighbours to improve the estimation performance by utilizing the correlation of tasks. Then, according to our model, a distributed alternating direction method of multipliers (DADMM) algorithm is designed, while it has enormous computational complexity. To address this drawback, an ODADMM algorithm is further developed, and the algorithm can converge to an optimal point that is validated. Numerical results verify that the proposed algorithm is more competitive in convergence speed and performance than other related algorithms, and two real scenes are tested to verify the effectiveness of the algorithm.

Details

show
hide
Language(s): eng - English
 Dates: 2022-08-022022-11-01
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1109/TNSE.2022.3195876
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
Model / method: Open Source Software
Working Group: Network- and machine-learning-based prediction of extreme events
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: IEEE Transactions on Network Science and Engineering
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 9 (6) Sequence Number: - Start / End Page: 4115 - 4128 Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/IEEE-transactions-network-sience-engineering
Publisher: Institute of Electrical and Electronics Engineers (IEEE)