日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Reliability of resilience estimation based on multi-instrument time series

Smith, T., Zotta, R.-M., Boulton, C. A., Lenton, T. M., Dorigo, W., & Boers, N. (2023). Reliability of resilience estimation based on multi-instrument time series. Earth System Dynamics, 14(1), 173-183. doi:10.5194/esd-14-173-2023.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
28378oa.pdf (出版社版), 3MB
ファイル名:
28378oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Smith, Taylor1, 著者
Zotta, Ruxandra-Maria1, 著者
Boulton, Chris A.1, 著者
Lenton, Timothy M.1, 著者
Dorigo, Wouter1, 著者
Boers, Niklas2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Many widely used observational data sets are comprised of several overlapping instrument records. While data inter-calibration techniques often yield continuous and reliable data for trend analysis, less attention is generally paid to maintaining higher-order statistics such as variance and autocorrelation. A growing body of work uses these metrics to quantify the stability or resilience of a system under study and potentially to anticipate an approaching critical transition in the system. Exploring the degree to which changes in resilience indicators such as the variance or autocorrelation can be attributed to non-stationary characteristics of the measurement process – rather than actual changes in the dynamical properties of the system – is important in this context. In this work we use both synthetic and empirical data to explore how changes in the noise structure of a data set are propagated into the commonly used resilience metrics lag-one autocorrelation and variance. We focus on examples from remotely sensed vegetation indicators such as vegetation optical depth and the normalized difference vegetation index from different satellite sources. We find that time series resulting from mixing signals from sensors with varied uncertainties and covering overlapping time spans can lead to biases in inferred resilience changes. These biases are typically more pronounced when resilience metrics are aggregated (for example, by land-cover type or region), whereas estimates for individual time series remain reliable at reasonable sensor signal-to-noise ratios. Our work provides guidelines for the treatment and aggregation of multi-instrument data in studies of critical transitions and resilience.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2023-02-142023-02-14
 出版の状態: Finally published
 ページ: 11
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.5194/esd-14-173-2023
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: FutureLab - Artificial Intelligence in the Anthropocene
MDB-ID: No data to archive
OATYPE: Gold Open Access
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Earth System Dynamics
種別: 学術雑誌, SCI, Scopus, p3, oa
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 14 (1) 通巻号: - 開始・終了ページ: 173 - 183 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1402282
Publisher: Copernicus