Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Diagnosis of Early Mild Cognitive Impairment Based on Associated High-Order Functional Connection Network Generated by Multimodal MRI

Wang, W., Zhang, S., Wang, Z., Luo, X., Luan, P., Hramov, A., Kurths, J., He, C., Li, J. (2024): Diagnosis of Early Mild Cognitive Impairment Based on Associated High-Order Functional Connection Network Generated by Multimodal MRI. - IEEE Transactions on Cognitive and Developmental Systems, 16, 2, 618-627.
https://doi.org/10.1109/TCDS.2023.3283406

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wang, Weiping, Autor
Zhang, Shunqi, Autor
Wang, Zhen, Autor
Luo, Xiong, Autor
Luan, Ping, Autor
Hramov, Alexander, Autor
Kurths, Jürgen1, Autor              
He, Chang, Autor
Li, Jianwu, Autor
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Mild cognitive impairment (MCI) is highly likely to convert to Alzheimer’s disease (AD). The main approach to identifying MCI is using a functional connection network (FCN). Traditional FCN is used to study the correlation between two brain regions, but it lacks deeper brain interaction information. Neuroscientists found the internal functional activity pattern in the human brain is characterized by sparse, modular, and overlapping structures, and the FCN is restricted by the brain structural connection network (SCN). They can improve the estimation accuracy of FCN. Therefore, this article first constructs low order FCN (LFCN) based on brain sparse, modular, and overlapping activity patterns. Then, new high-order FCN (HFCN) is proposed based on the restrictive relationship between SCN and FCN. To combine high robustness of LFCN with high sensitivity of HFCN, a new combination strategy of LFCN and HFCN is proposed. It integrates the idea of brain modular and overlapping with the restricted relationship between SCN and FCN. Finally, the experimental results show that in early MCI (EMCI) recognition the best classification performance is acquired with an accuracy of 91.42%, which is better than similar methods. This method will be instrumental in the early recognition of clinical MCI.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-06-142024-04-01
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1109/TCDS.2023.3283406
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Health
Research topic keyword: Nonlinear Dynamics
MDB-ID: No data to archive
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IEEE Transactions on Cognitive and Developmental Systems
Genre der Quelle: Zeitschrift, SCI, Scopus
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 16 (2) Artikelnummer: - Start- / Endseite: 618 - 627 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/2379-8920
Publisher: Institute of Electrical and Electronics Engineers (IEEE)