日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  PyRQA - Conducting recurrence quantification analysis on very long time series efficiently

Rawald, T., Sips, M., & Marwan, N. (2017). PyRQA - Conducting recurrence quantification analysis on very long time series efficiently. Computers and Geosciences, 104, 101-108. doi:10.1016/j.cageo.2016.11.016.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
7852.pdf (出版社版), 921KB
 
ファイルのパーマリンク:
-
ファイル名:
7852.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Rawald, T.1, 著者
Sips, M.1, 著者
Marwan, Norbert2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: PyRQA is a software package that efficiently conducts recurrence quantification analysis (RQA) on time series consisting of more than one million data points. RQA is a method from non-linear time series analysis that quantifies the recurrent behaviour of systems. Existing implementations to RQA are not capable of analysing such very long time series at all or require large amounts of time to calculate the quantitative measures. PyRQA overcomes their limitations by conducting the RQA computations in a highly parallel manner. Building on the OpenCL framework, PyRQA leverages the computing capabilities of a variety of parallel hardware architectures, such as GPUs. The underlying computing approach partitions the RQA computations and enables to employ multiple compute devices at the same time. The goal of this publication is to demonstrate the features and the runtime efficiency of PyRQA. For this purpose we employ a real-world example, comparing the dynamics of two climatological time series, and a synthetic example, reducing the runtime regarding the analysis of a series consisting of over one million data points from almost eight hours using state-of-the-art RQA software to roughly 69 s using PyRQA.

資料詳細

表示:
非表示:
言語:
 日付: 2017
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.cageo.2016.11.016
PIKDOMAIN: Transdisciplinary Concepts & Methods - Research Domain IV
eDoc: 7852
Research topic keyword: Nonlinear Dynamics
Model / method: Nonlinear Data Analysis
Model / method: Research Software Engineering (RSE)
Model / method: Open Source Software
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
Working Group: Network- and machine-learning-based prediction of extreme events
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Computers and Geosciences
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 104 通巻号: - 開始・終了ページ: 101 - 108 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals86