Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A systematic review of spatial disaggregation methods for climate action planning

Patil, S., Pflugradt, N., Weinand, J. M., Stolten, D., Kropp, J. P. (2024): A systematic review of spatial disaggregation methods for climate action planning. - Energy and AI, 17, 100386.
https://doi.org/10.1016/j.egyai.2024.100386

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1-s2.0-S2666546824000521-main.pdf (Verlagsversion), 2MB
Name:
1-s2.0-S2666546824000521-main.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Patil , Shruthi1, Autor
Pflugradt, Noah2, Autor
Weinand, Jann M.2, Autor
Stolten, Detlef2, Autor
Kropp, Jürgen P.1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: National-level climate action plans are often formulated broadly. Spatially disaggregating these plans to individual municipalities can offer substantial benefits, such as enabling regional climate action strategies and for assessing the feasibility of national objectives. Numerous spatial disaggregation approaches can be found in the literature. This study reviews and categorizes these. The review is followed by a discussion of the relevant methods for the disaggregation of climate action plans. It is seen that methods employing proxy data, machine learning models, and geostatistical ones are the most relevant methods for the spatial disaggregation of national energy and climate plans. The analysis offers guidance for selecting appropriate methods based on factors such as data availability at the municipal level and the presence of spatial autocorrelation in the data. As the urgency of addressing climate change escalates, understanding the spatial aspects of national energy and climate strategies becomes increasingly important. This review will serve as a valuable guide for researchers and practitioners applying spatial disaggregation in this crucial field.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2024-01-082024-06-062024-06-172024-09-01
 Publikationsstatus: Final veröffentlicht
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.egyai.2024.100386
Organisational keyword: RD2 - Climate Resilience
PIKDOMAIN: RD2 - Climate Resilience
Working Group: Urban Transformations
MDB-ID: No data to archive
Research topic keyword: Energy
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Energy and AI
Genre der Quelle: Zeitschrift, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 17 Artikelnummer: 100386 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/energy-and-ai
Publisher: Elsevier