Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Data-driven joint noise reduction strategy for flutter boundary prediction

Yan, H., Xu, Y., Liu, Q., Wang, X., Kurths, J. (2025 online): Data-driven joint noise reduction strategy for flutter boundary prediction. - European Physical Journal - Special Topics.
https://doi.org/10.1140/epjs/s11734-025-01497-z

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Yan_2025_s11734-025-01497-z.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
Yan_2025_s11734-025-01497-z.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://github.com/Xuan0420/A-joint-noise-reduction-strategy (Ergänzendes Material)
Beschreibung:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Yan, Haoxuan1, Autor
Xu, Yong1, Autor
Liu, Qi1, Autor
Wang, Xiaolong1, Autor
Kurths, Jürgen2, Autor              
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Flutter test data processing is crucial for modal parameter identification, which facilitates flutter boundary prediction. However, the response signals acquired from real experiments have difficulties due to non-smoothness, multimodal mixing and low signal-to-noise ratio. A direct analysis and prediction will often lead to low accuracy on the predictions and seriously threaten flight safety. Therefore, this paper proposes a data-driven joint noise reduction strategy to improve the performance of flutter boundary prediction. Particularly, a variational mode decomposition is substantially improved by introducing an optimization algorithm. The decomposed effective signal components are reprocessed via a wavelet threshold denoising method with a soft-hard compromise threshold function. Then, based on the matrix pencil method, the modal parameters of original turbulence response signals are identified from the impulse responses generating by deep learning. The effectiveness of the presented method is verified by a comparative analysis with conventional methods.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2025-02-14
 Publikationsstatus: Online veröffentlicht
 Seiten: 18
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1140/epjs/s11734-025-01497-z
MDB-ID: No MDB - stored outside PIK (see locators/paper)
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Model / method: Nonlinear Data Analysis
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: European Physical Journal - Special Topics
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/150617
Publisher: Springer