日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Perception and Navigation in Autonomous Systems in the Era of Learning: A Survey

Tang, Y., Zhao, C., Wang, J., Zhang, C., Sun, Q., & Kurths, J. (2023). Perception and Navigation in Autonomous Systems in the Era of Learning: A Survey. IEEE Transactions on Neural Networks and Learning Systems, 34(12), 9604-9624. doi:10.1109/TNNLS.2022.3167688.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Tang , Yang1, 著者
Zhao, Chaoqiang 1, 著者
Wang, Jianrui1, 著者
Zhang, Chongzhen 1, 著者
Sun, Qiyu 1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Autonomous systems possess the features of inferring their own state, understanding their surroundings, and performing autonomous navigation. With the applications of learning systems, like deep learning and reinforcement learning, the visual-based self-state estimation, environment perception, and navigation capabilities of autonomous systems have been efficiently addressed, and many new learning-based algorithms have surfaced with respect to autonomous visual perception and navigation. In this review, we focus on the applications of learning-based monocular approaches in ego-motion perception, environment perception, and navigation in autonomous systems, which is different from previous reviews that discussed traditional methods. First, we delineate the shortcomings of existing classical visual simultaneous localization and mapping (vSLAM) solutions, which demonstrate the necessity to integrate deep learning techniques. Second, we review the visual-based environmental perception and understanding methods based on deep learning, including deep learning-based monocular depth estimation, monocular ego-motion prediction, image enhancement, object detection, semantic segmentation, and their combinations with traditional vSLAM frameworks. Then, we focus on the visual navigation based on learning systems, mainly including reinforcement learning and deep reinforcement learning. Finally, we examine several challenges and promising directions discussed and concluded in related research of learning systems in the era of computer science and robotics.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2022-04-282023-12-01
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1109/TNNLS.2022.3167688
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Research topic keyword: Energy
Model / method: Machine Learning
Working Group: Network- and machine-learning-based prediction of extreme events
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: IEEE Transactions on Neural Networks and Learning Systems
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 34 (12) 通巻号: - 開始・終了ページ: 9604 - 9624 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/IEEE-transactions-on-neural-networks-and-learning-systems
Publisher: Institute of Electrical and Electronics Engineers (IEEE)