日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Universal window size-dependent transition of correlations in complex systems

Wu, T., An, F., Gao, X., Liu, S., Sun, X., Wang, Z., Su, Z., & Kurths, J. (2023). Universal window size-dependent transition of correlations in complex systems. Chaos, 33(2):. doi:10.1063/5.0134944.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Wu_2023_5.0134944.pdf (出版社版), 10MB
 
ファイルのパーマリンク:
-
ファイル名:
Wu_2023_5.0134944.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Wu, Tao1, 著者              
An, Feng2, 著者
Gao, Xiangyun2, 著者
Liu, Siyao2, 著者
Sun, Xiaotian2, 著者
Wang, Zhigang2, 著者
Su, Zhen1, 著者              
Kurths, Jürgen1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Correlation analysis serves as an easy-to-implement estimation approach for the quantification of the interaction or connectivity between different units. Often, pairwise correlations estimated by sliding windows are time-varying (on different window segments) and window size-dependent (on different window sizes). Still, how to choose an appropriate window size remains unclear. This paper offers a framework for studying this fundamental question by observing a critical transition from a chaotic-like state to a nonchaotic state. Specifically, given two time series and a fixed window size, we create a correlation-based series based on nonlinear correlation measurement and sliding windows as an approximation of the time-varying correlations between the original time series. We find that the varying correlations yield a state transition from a chaotic-like state to a nonchaotic state with increasing window size. This window size-dependent transition is analyzed as a universal phenomenon in both model and real-world systems (e.g., climate, financial, and neural systems). More importantly, the transition point provides a quantitative rule for the selection of window sizes. That is, the nonchaotic correlation better allows for many regression-based predictions. Complex connections between different units can be simply approximated by correlation analysis between corresponding time series. When the complete information (the entire time series) is considered for analysis, dynamic connections are aggregated into a single value, reflecting the overall macro linkage. When segmented information (a sliced time series) is combined with sliding windows, the underlying dynamic connections can be approximated by time-varying correlations. Intuitively, the longer the segments are, the more likely to capture cyclic behavior. A typical example is that in climate science, large-scale climate phenomena, such as seasonal changes induced by the annual cycle of solar radiation, are not observable on the timescale of diurnal cycles. Similarly, for correlation analysis, choosing a suitable window scale to capture the necessary patterns hidden in the time series is fundamental; yet, how to do so is unclear. We intend to address this issue in our work.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2023-02-132023-02
 出版の状態: Finally published
 ページ: 12
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1063/5.0134944
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Nonlinear Dynamics
Model / method: Nonlinear Data Analysis
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Chaos
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 33 (2) 通巻号: 023111 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)