Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Identifying characteristic time scales in power grid frequency fluctuations with DFA

Meyer, P. G., Anvari, M., Kantz, H. (2020): Identifying characteristic time scales in power grid frequency fluctuations with DFA. - Chaos, 30, 1, 013130.
https://doi.org/10.1063/1.5123778

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
8807.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
8807.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Meyer, P. G.1, Autor
Anvari, Mehrnaz2, Autor              
Kantz, H.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Frequency measurements indicate the state of a power grid. In fact, deviations from the nominal frequency determine whether the grid is stable or in a critical situation. We aim to understand the fluctuations of the frequency on multiple time scales with a recently proposed method based on detrended fluctuation analysis. It enables us to infer characteristic time scales and generate stochastic models. We capture and quantify known features of the fluctuations like periodicity due to the trading market, response to variations by control systems, and stability of the long time average. We discuss similarities and differences between the British grid and the continental European grid. The power grid (main) frequency, as an observable variable, is not only easily measurable but also contains significant information about the state (and therefore stability) of the considered grid. The information in the frequency variations can include the functionality of control systems, the effect of regular dispatches due to the trading market and moreover the effect of fluctuations in renewable energies (REs) and demands on the grid. Therefore, disentangling the interplay of control systems, dispatch and fluctuations from REs and demands provides deeper insight into the dynamics of the frequency and, consequently, enables us to model or forecast it. Detrended fluctuation analysis (DFA) is a well-known method for scaling analysis. Recently, it has been shown that one can also recognize typical characteristic time scales in datasets via the DFA fluctuation function. Employing this new approach, we recognize characteristics time scales of the frequency and attempt to recognize the role of the trading market, control systems, REs, as well as consumers in the short- and long-time fluctuations from seconds to weeks. Finally, we model the frequency variations by a superposition of autoregressive models of order two AR(2), a daily cycle, and an additional regulatory component for long periods of time

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/1.5123778
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8807
Working Group: Dynamics, stability and resilience of complex hybrid infrastructure networks
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 30 (1) Artikelnummer: 013130 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808
Publisher: American Institute of Physics (AIP)