Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  How predictable are mass extinction events?

Foster, W. J., Allen, B. J., Kitzmann, N., Münchmeyer, J., Rettelbach, T., Witts, J. D., Whittle, R. J., Larina, E., Clapham, M. E., Dunhill, A. M. (2023): How predictable are mass extinction events? - Royal Society Open Science, 10, 3, 221507.
https://doi.org/10.1098/rsos.221507

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
28249oa.pdf (Verlagsversion), 2MB
Name:
28249oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.5281/zenodo.7646020 (Ergänzendes Material)
Beschreibung:
Data and relevant code

Urheber

einblenden:
ausblenden:
 Urheber:
Foster, William J.1, Autor
Allen, Bethany J.1, Autor
Kitzmann, Niklas2, Autor              
Münchmeyer, Jannes1, Autor
Rettelbach, Tabea1, Autor
Witts, James D.1, Autor
Whittle, Rowan J.1, Autor
Larina, Ekaterina1, Autor
Clapham, Matthew E.1, Autor
Dunhill, Alexander M.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Many modern extinction drivers are shared with past mass extinction events, such as rapid climate warming, habitat loss, pollution and invasive species. This commonality presents a key question: can the extinction risk of species during past mass extinction events inform our predictions for a modern biodiversity crisis? To investigate if it is possible to establish which species were more likely to go extinct during mass extinctions, we applied a functional trait-based model of extinction risk using a machine learning algorithm to datasets of marine fossils for the end-Permian, end-Triassic and end-Cretaceous mass extinctions. Extinction selectivity was inferred across each individual mass extinction event, before testing whether the selectivity patterns obtained could be used to ‘predict’ the extinction selectivity exhibited during the other mass extinctions. Our analyses show that, despite some similarities in extinction selectivity patterns between ancient crises, the selectivity of mass extinction events is inconsistent, which leads to a poor predictive performance. This lack of predictability is attributed to evolution in marine ecosystems, particularly during the Mesozoic Marine Revolution, associated with shifts in community structure alongside coincident Earth system changes. Our results suggest that past extinctions are unlikely to be informative for predicting extinction risk during a projected mass extinction.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-03-012023-03-152023-03-15
 Publikationsstatus: Final veröffentlicht
 Seiten: 18
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1098/rsos.221507
PIKDOMAIN: RD1 - Earth System Analysis
PIKDOMAIN: FutureLab - Earth Resilience in the Anthropocene
Organisational keyword: RD1 - Earth System Analysis
Organisational keyword: FutureLab - Earth Resilience in the Anthropocene
Research topic keyword: Ecosystems
Research topic keyword: Paleoclimate
Regional keyword: Global
Model / method: Machine Learning
MDB-ID: No MDB - stored outside PIK (see DOI)
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Royal Society Open Science
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 10 (3) Artikelnummer: 221507 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1709271
Publisher: The Royal Society