hide
Free keywords:
-
Abstract:
Earthquakes are one of the most devastating natural disasters that plague society. Skilled, reliable earthquake forecasting remains the ultimate goal for seismologists. Using the detrended fluctuation analysis (DFA) and conditional probability (CP) methods, we find that memory exists not only in interoccurrence seismic records but also in released energy as well as in the series of the number of events per unit time. Analysis of a standard epidemic-type aftershock sequences (ETAS) earthquake model indicates that the empirically observed earthquake memory can be reproduced only for a narrow range of the model's parameters. This finding therefore provides tight constraints on the model's parameters and can serve as a testbed for existing earthquake forecasting models. Furthermore, we show that by implementing DFA and CP results, the ETAS model can significantly improve the short-term forecasting rate for the real (Italian) earthquake catalog.