Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Edge anisotropy and the geometric perspective on flow networks

Molkenthin, N., Kutza, H., Tupikina, L., Marwan, N., Donges, J. F., Feudel, U., Kurths, J., Donner, R. V. (2017): Edge anisotropy and the geometric perspective on flow networks. - Chaos, 27, 3, 035802.
https://doi.org/10.1063/1.4971785

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
7577.pdf (beliebiger Volltext), 4MB
 
Datei-Permalink:
-
Name:
7577.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Molkenthin, Nora1, Autor              
Kutza, Hannes1, Autor              
Tupikina, Liubov1, Autor              
Marwan, Norbert1, Autor              
Donges, Jonathan Friedemann1, Autor              
Feudel, U.2, Autor
Kurths, Jürgen1, Autor              
Donner, Reik V.1, Autor              
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Spatial networks have recently attracted great interest in various fields of research. While the traditional network-theoretic viewpoint is commonly restricted to their topological characteristics (often disregarding the existing spatial constraints), this work takes a geometric perspective, which considers vertices and edges as objects in a metric space and quantifies the corresponding spatial distribution and alignment. For this purpose, we introduce the concept of edge anisotropy and define a class of measures characterizing the spatial directedness of connections. Specifically, we demonstrate that the local anisotropy of edges incident to a given vertex provides useful information about the local geometry of geophysical flows based on networks constructed from spatio-temporal data, which is complementary to topological characteristics of the same flow networks. Taken both structural and geometric viewpoints together can thus assist the identification of underlying flow structures from observations of scalar variables. Complex networks have recently attracted a rising interest for studying dynamical patterns in geophysical flows such as in the atmosphere and ocean. For this purpose, two distinct approaches have been proposed based on either (i) correlations between values of a certain variable measured at different parts of the flow domain (correlation-based flow networks) or (ii) transition probabilities of passively advected tracers between different parts of the fluid domain (Lagrangian flow networks). So far, the investigations on both types of flow networks have mostly addressed classical topological network characteristics, disregarding the fact that such networks are naturally embedded in some physical space and, hence, have intrinsic restrictions to their structural organization. In this paper, we introduce a novel concept to obtain a complementary geometric characterization of the local network patterns based on the anisotropy of edge orientations. For two prototypical model systems of different complexity, we demonstrate that the geometric characterization of correlation-based flow networks derived from scalar observables can actually provide additional and useful information contributing to the identification of the underlying flow patterns that are often not directly accessible. In this spirit, the proposed approach provides a prospective diagnostic tool for geophysical as well as technological flows

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2017
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/1.4971785
PIKDOMAIN: Earth System Analysis - Research Domain I
PIKDOMAIN: Transdisciplinary Concepts & Methods - Research Domain IV
eDoc: 7577
Research topic keyword: Complex Networks
Model / method: Nonlinear Data Analysis
Organisational keyword: RD4 - Complexity Science
Working Group: Whole Earth System Analysis
Working Group: Development of advanced time series analysis techniques
Working Group: Dynamics, stability and resilience of complex hybrid infrastructure networks
Working Group: Network- and machine-learning-based prediction of extreme events
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chaos
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 27 (3) Artikelnummer: 035802 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808