Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Deriving life cycle assessment coefficients for application in integrated assessment modelling

Arvesen, A., Luderer, G., Pehl, M., Bodirsky, B. L., Hertwich, E. G. (2018): Deriving life cycle assessment coefficients for application in integrated assessment modelling. - Environmental Modelling and Software, 99, 111-125.
https://doi.org/10.1016/j.envsoft.2017.09.010

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
7813.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
7813.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
21979oa.pdf (Postprint), 2MB
Name:
21979oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Arvesen, A.1, Autor
Luderer, Gunnar2, Autor              
Pehl, Michaja2, Autor              
Bodirsky, Benjamin Leon2, Autor              
Hertwich, E. G.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The fields of life cycle assessment (LCA) and integrated assessment (IA) modelling today have similar interests in assessing macro-level transformation pathways with a broad view of environmental concerns. Prevailing IA models lack a life cycle perspective, while LCA has traditionally been static- and micro-oriented. We develop a general method for deriving coefficients from detailed, bottom-up LCA suitable for application in IA models, thus allowing IA analysts to explore the life cycle impacts of technology and scenario alternatives. The method decomposes LCA coefficients into life cycle phases and energy carrier use by industries, thus facilitating attribution of life cycle effects to appropriate years, and consistent and comprehensive use of IA model-specific scenario data when the LCA coefficients are applied in IA scenario modelling. We demonstrate the application of the method for global electricity supply to 2050 and provide numerical results (as supplementary material) for future use by IA analysts.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2018
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.envsoft.2017.09.010
PIKDOMAIN: Climate Impacts & Vulnerabilities - Research Domain II
PIKDOMAIN: Sustainable Solutions - Research Domain III
eDoc: 7813
Research topic keyword: 1.5/2°C limit
Research topic keyword: Energy
Research topic keyword: Health
Research topic keyword: Ecosystems
Research topic keyword: Decarbonization  
Model / method: REMIND
Model / method: Model Intercomparison
Regional keyword: Global
Organisational keyword: RD3 - Transformation Pathways
Organisational keyword: RD2 - Climate Resilience
Working Group: Land Use and Resilience
Working Group: Energy Systems
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Environmental Modelling and Software
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 99 Artikelnummer: - Start- / Endseite: 111 - 125 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals127