日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Stochastic basins of attraction and generalized committor functions

Lindner, M., & Hellmann, F. (2019). Stochastic basins of attraction and generalized committor functions. Physical Review E, 100(2):. doi:10.1103/PhysRevE.100.022124.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
8579.pdf (出版社版), 2MB
 
ファイルのパーマリンク:
-
ファイル名:
8579.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Lindner, Michael1, 著者              
Hellmann, Frank1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: We study two generalizations of the basin of attraction of a stable state, to the case of stochastic dynamics, arbitrary regions, and finite-time horizons. This is done by introducing generalized committor functions and studying soujourn times. We show that the volume of the generalized basin, the basin stability, can be efficiently estimated using Monte Carlo–like techniques, making this concept amenable to the study of high-dimension stochastic systems. Finally, we illustrate in a set of examples that stochastic basins efficiently capture the realm of attraction of metastable sets, which parts of phase space go into long transients in deterministic systems, that they allow us to deal with numerical noise, and can detect the collapse of metastability in high-dimensional systems. We discuss two far-reaching generalizations of the basin of attraction of an attractor. The basin of attraction of an attractor are those states that eventually will get to the attractor. In a generic stochastic system, all regions will be left again; no attraction is permanent. To obtain the equivalent of the basin of attraction of a region we need to generalize the notion to cover finite-time horizons and finite regions. We do so by considering soujourn times, the fraction of time that a trajectory spends in a set, and by generalizing committor functions which arise in the study of hitting probabilities. In a simplified setting we show that these two notions reduce to the normal notions of the basin of attraction in the appropriate limits. We also show that the volume of these stochastic basins can be efficiently estimated for high-dimensional systems at computational cost comparable to that for deterministic systems. To fully illustrate the properties captured by the stochastic basins, we show a set of examples ranging from simple conceptual models to high-dimensional inhomogeneous oscillator chains. These show that stochastic basins efficiently capture metastable attraction, the presence of long transients, that they allow us to deal with numerical and approximation noise, and can detect the collapse of metastability with increasing noise in high-dimensional systems.

資料詳細

表示:
非表示:
言語:
 日付: 2019
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1103/PhysRevE.100.022124
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8579
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Complex Networks
Organisational keyword: RD4 - Complexity Science
Working Group: Dynamics, stability and resilience of complex hybrid infrastructure networks
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Physical Review E
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 100 (2) 通巻号: 022124 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/150218