日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Border effect corrections for diagonal line based recurrence quantification analysis measures

Krämer, K.-H., & Marwan, N. (2019). Border effect corrections for diagonal line based recurrence quantification analysis measures. Physics Letters A, 383(34):. doi:10.1016/j.physleta.2019.125977.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
23376oa.pdf (ポストプリント), 7MB
ファイル名:
23376oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Krämer, Kai-Hauke1, 著者              
Marwan, Norbert1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Recurrence Quantification Analysis (RQA) defines a number of quantifiers, which base upon diagonal line structures in the recurrence plot (RP). Due to the finite size of an RP, these lines can be cut by the borders of the RP and, thus, bias the length distribution of diagonal lines and, consequently, the line based RQA measures. In this letter we investigate the impact of the mentioned border effects and of the thickening of diagonal lines in an RP (caused by tangential motion) on the estimation of the diagonal line length distribution, quantified by its entropy. Although a relation to the Lyapunov spectrum is theoretically expected, the mentioned entropy yields contradictory results in many studies. Here we summarize correction schemes for both, the border effects and the tangential motion and systematically compare them to methods from the literature. We show that these corrections lead to the expected behavior of the diagonal line length entropy, in particular meaning zero values in case of a regular motion and positive values for chaotic motion. Moreover, we test these methods under noisy conditions, in order to supply practical tools for applied statistical research.

資料詳細

表示:
非表示:
言語:
 日付: 2019
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.physleta.2019.125977
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8625
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Complex Networks
Model / method: Open Source Software
Model / method: Nonlinear Data Analysis
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Physics Letters A
種別: 学術雑誌, SCI, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 383 (34) 通巻号: 125977 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals398