Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Universal gap scaling in percolation

Fan, J., Meng, J., Liu, Y., Ali Saberi, A., Kurths, J., Nagler, J. (2020): Universal gap scaling in percolation. - Nature Physics, 16, 4, 455-461.
https://doi.org/10.1038/s41567-019-0783-2

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
8749.pdf (Verlagsversion), 6MB
 
Datei-Permalink:
-
Name:
8749.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Fan, Jingfang1, Autor              
Meng, Jun1, Autor              
Liu, Yang1, Autor              
Ali Saberi, A.2, Autor
Kurths, Jürgen1, Autor              
Nagler, J.2, Autor
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Universality is a principle that fundamentally underlies many critical phenomena, ranging from epidemic spreading to the emergence or breakdown of global connectivity in networks. Percolation, the transition to global connectedness on gradual addition of links, may exhibit substantial gaps in the size of the largest connected network component. We uncover that the largest gap statistics is governed by extreme-value theory. This allows us to unify continuous and discontinuous percolation by virtue of universal critical scaling functions, obtained from normal and extreme-value statistics. Specifically, we show that the universal scaling function of the size of the largest gap is given by the extreme-value Gumbel distribution. This links extreme-value statistics to universality and criticality in percolation.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41567-019-0783-2
PIKDOMAIN: RD1 - Earth System Analysis
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8749
MDB-ID: No data to archive
Organisational keyword: RD1 - Earth System Analysis
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Complex Networks
Model / method: Qualitative Methods
Working Group: Terrestrial Safe Operating Space
Working Group: Network- and machine-learning-based prediction of extreme events
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Physics
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 16 (4) Artikelnummer: - Start- / Endseite: 455 - 461 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/1603091
Publisher: Nature