日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Perturbations and phase transitions in swarm optimization algorithms

Vantuch, T., Zelinka, I., Adamatzky, A., & Marwan, N. (2019). Perturbations and phase transitions in swarm optimization algorithms. Natural Computing, 18(3), 579-591. doi:10.1007/s11047-019-09741-x.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
8780.pdf (出版社版), 2MB
 
ファイルのパーマリンク:
-
ファイル名:
8780.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Vantuch, T.1, 著者
Zelinka, I.1, 著者
Adamatzky, A.1, 著者
Marwan, Norbert2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Natural systems often exhibit chaotic behavior in their space-time evolution. Systems transiting between chaos and order manifest a potential to compute, as shown with cellular automata and artificial neural networks. We demonstrate that swarm optimization algorithms also exhibit transitions from chaos, analogous to a motion of gas molecules, when particles explore solution space disorderly, to order, when particles follow a leader, similar to molecules propagating along diffusion gradients in liquid solutions of reagents. We analyze these ‘phase-like’ transitions in swarm optimization algorithms using recurrence quantification analysis and Lempel-Ziv complexity estimation. We demonstrate that converging iterations of the optimization algorithms are statistically different from non-converging ones in a view of applied chaos, complexity and predictability estimating indicators. An identification of a key factor responsible for the intensity of their phase transition is the main contribution of this paper. We examined an optimization as a process with three variable factors—an algorithm, number generator and optimization function. More than 9000 executions of the optimization algorithm revealed that the nature of an applied algorithm itself is the main source of the phase transitions. Some of the algorithms exhibit larger transition-shifting behavior while others perform rather transition-steady computing. These findings might be important for future extensions of these algorithms.

資料詳細

表示:
非表示:
言語:
 日付: 2019
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1007/s11047-019-09741-x
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8780
Research topic keyword: Nonlinear Dynamics
Model / method: Nonlinear Data Analysis
Model / method: Machine Learning
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Natural Computing
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 18 (3) 通巻号: - 開始・終了ページ: 579 - 591 識別子(ISBN, ISSN, DOIなど): その他: Springer
その他: 1572-9796
ISSN: 1567-7818
CoNE: https://publications.pik-potsdam.de/cone/journals/resource/natural-computing