日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series

Ruan, Y., Donner, R. V., Guan, S., & Zou, Y. (2019). Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series. Chaos, 29(4):. doi:10.1063/1.5086527.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
8801.pdf (出版社版), 2MB
 
ファイルのパーマリンク:
-
ファイル名:
8801.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Ruan, Y.1, 著者
Donner, Reik V.2, 著者              
Guan, S.1, 著者
Zou, Y.1, 著者
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: It has been demonstrated that the construction of ordinal partition transition networks (OPTNs) from time series provides a prospective approach to improve our understanding of the underlying dynamical system. In this work, we introduce a suite of OPTN based complexity measures to infer the coupling direction between two dynamical systems from pairs of time series. For several examples of coupled stochastic processes, we demonstrate that our approach is able to successfully identify interaction delays of both unidirectional and bidirectional coupling configurations. Moreover, we show that the causal interaction between two coupled chaotic Hénon maps can be captured by the OPTN based complexity measures for a broad range of coupling strengths before the onset of synchronization. Finally, we apply our method to two real-world observational climate time series, disclosing the interaction delays underlying the temperature records from two distinct stations in Oxford and Vienna. Our results suggest that ordinal partition transition networks can be used as complementary tools for causal inference tasks and provide insights into the potentials and theoretical foundations of time series networks. The construction of transition networks from time series is one of the most widely spread methods for time series analysis based on complex network approaches. Transition networks allow to characterize the intrinsic heterogeneity of the state transition behavior of the system, which provides many novel insights supplementing traditional time series analysis methods. However, most existing works on this topic have focused on disclosing properties of a single time series, which calls for a generalization to multivariate analysis. Here, we choose the problem of identifying coupling direction as a showcase to demonstrate that measures quantifying the heterogeneity of state transitions in ordinal partition transition networks can successfully capture unidirectional and bidirectional coupling between paradigmatic models of dynamical systems as well as real-world time series.

資料詳細

表示:
非表示:
言語:
 日付: 2019
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1063/1.5086527
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8801
MDB-ID: Entry suspended
Working Group: Development of advanced time series analysis techniques
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Chaos
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 29 (4) 通巻号: 043111 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/180808