Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Stationary distribution simulation of rare events under colored Gaussian noise

Li, H., Xu, Y., Kurths, J., Yue, X. (2019): Stationary distribution simulation of rare events under colored Gaussian noise. - European Physical Journal B, 92, 4, 76.
https://doi.org/10.1140/epjb/e2019-100022-y

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
8821.pdf (Verlagsversion), 6MB
 
Datei-Permalink:
-
Name:
8821.pdf
Beschreibung:
-
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, H.1, Autor
Xu, Yong2, Autor              
Kurths, Jürgen2, Autor              
Yue, X.1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Forward flux sampling (FFS) has provided a convenient and efficient way to simulate rare events in equilibrium as well as non-equilibrium stochastic systems. In the present paper, the FFS scheme is applied to systems driven by colored Gaussian noise through enlarging the dimension to deal with the non-Markovian property. Besides, the parameters of the FFS scheme have to be reconsidered. Interestingly, by analyzing the effect of colored Gaussian noise on stationary distributions, some results are found which are clearly different from the case of Gaussian white noise excitation. We mainly found that the probability of the occurrence of rare events is inversely proportional to the correlation time. Comparing to the case of Gaussian white noise with the same intensity, the presence of colored Gaussian noise exerts a hindrance to the occurrence of rare events. Meanwhile, the FFS results show a good agreement with those from Monte Carlo simulations, even for the colored Gaussian noise case. This provides a potential insight into rare events of systems under non-white Gaussian noise via the FFS scheme.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1140/epjb/e2019-100022-y
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8821
MDB-ID: No data to archive
Organisational keyword: RD4 - Complexity Science
Working Group: Network- and machine-learning-based prediction of extreme events
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: European Physical Journal B
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 92 (4) Artikelnummer: 76 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals138