日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Recurrence analysis of vegetation indices for highlighting the ecosystem response to drought events: An application to the Amazon Forest

Semeraro, T., Luvisi, A., Lillo, A. O., Aretano, R., Buccolieri, R., & Marwan, N. (2020). Recurrence analysis of vegetation indices for highlighting the ecosystem response to drought events: An application to the Amazon Forest. Remote Sensing, 12(6):. doi:10.3390/rs12060907.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
8988oa.pdf (出版社版), 5MB
ファイル名:
8988oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Semeraro, T.1, 著者
Luvisi, A.1, 著者
Lillo, A. O.1, 著者
Aretano, R.1, 著者
Buccolieri, R.1, 著者
Marwan, Norbert2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Forests are important in sequestering CO2 and therefore play a significant role in climate change. However, the CO2 cycle is conditioned by drought events that alter the rate of photosynthesis, which is the principal physiological action of plants in transforming CO2 into biological energy. This study applied recurrence quantification analysis (RQA) to describe the evolution of photosynthesis-related indices to highlight disturbance alterations produced by the Atlantic Multidecadal Oscillation (AMO, years 2005 and 2010) and the El Niño-Southern Oscillation (ENSO, year 2015) in the Amazon forest. The analysis was carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) images to build time series of the enhanced vegetation index (EVI), the normalized difference water index (NDWI), and the land surface temperature (LST) covering the period 2001–2018. The results did not show significant variations produced by AMO throughout the study area, while a disruption due to the global warming phase linked to the extreme ENSO event occurred, and the forest was able to recover. In addition, spatial differences in the response of the forest to the ENSO event were found. These findings show that the application of RQA to the time series of vegetation indices supports the evaluation of the forest ecosystem response to disruptive events. This approach provides information on the capacity of the forest to recover after a disruptive event and, therefore is useful to estimate the resilience of this particular ecosystem.

資料詳細

表示:
非表示:
言語:
 日付: 2020
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.3390/rs12060907
PIKDOMAIN: RD4 - Complexity Science
eDoc: 8988
MDB-ID: No data to archive
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Extremes
Research topic keyword: Ecosystems
Model / method: Nonlinear Data Analysis
Regional keyword: Europe
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Remote Sensing
種別: 学術雑誌, SCI, Scopus, p3, OA
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 12 (6) 通巻号: 907 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals426
Publisher: MDPI