hide
Free keywords:
-
Abstract:
Climate change is projected to impact food production stability in many tropical countries through impacts on crop potential. However, without quantitative assessments of where, by how much and to what extent crop production is possible now and under future climatic conditions, efforts to design and implement adaptation strategies under Nationally Determined Contributions (NDCs) and National Action Plans (NAP) are unsystematic. In this study, we used extreme gradient boosting, a machine learning approach to model the current climatic suitability for maize, sorghum, cassava and groundnut in Ghana using yield data and agronomically important variables. We then used multi-model future climate projections for the 2050s and two greenhouse gas emissions scenarios (RCP 2.6 and RCP 8.5) to predict changes in the suitability range of these crops. We achieved a good model fit in determining suitability classes for all crops (AUC = 0.81–0.87). Precipitation-based factors are suggested as most important in determining crop suitability, though the importance is crop-specific. Under projected climatic conditions, optimal suitability areas will decrease for all crops except for groundnuts under RCP8.5 (no change: 0%), with greatest losses for maize (12% under RCP2.6 and 14% under RCP8.5). Under current climatic conditions, 18% of Ghana has optimal suitability for two crops, 2% for three crops with no area having optimal suitability for all the four crops. Under projected climatic conditions, areas with optimal suitability for two and three crops will decrease by 12% as areas having moderate and marginal conditions for multiple crops increase. We also found that although the distribution of multiple crop suitability is spatially distinct, cassava and groundnut will be more simultaneously suitable for the south while groundnut and sorghum will be more suitable for the northern parts of Ghana under projected climatic conditions.