Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A statistical analysis of time trends in atmospheric ethane

Friedrich, M., Beutner, E., Reuvers, H., Smeekes, S., Urbain, J.-P., Bader, W., Franco, B., Lejeune, B., Mahieu, E. (2020): A statistical analysis of time trends in atmospheric ethane. - Climatic Change, 162, 1, 105-125.
https://doi.org/10.1007/s10584-020-02806-2

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
24373oa.pdf (Verlagsversion), 2MB
Name:
24373oa.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Friedrich, Marina1, Autor           
Beutner, Eric2, Autor
Reuvers, Hanno2, Autor
Smeekes, Stephan2, Autor
Urbain, Jean-Pierre2, Autor
Bader, Whitney2, Autor
Franco, Bruno2, Autor
Lejeune, Bernard2, Autor
Mahieu, Emmanuel2, Autor
Affiliations:
1Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Statistics, Applications, stat.AP,econ.EM, DEAL Springer Nature
 Zusammenfassung: Ethane is the most abundant non-methane hydrocarbon in the Earth's atmosphere
and an important precursor of tropospheric ozone through various chemical
pathways. Ethane is also an indirect greenhouse gas (global warming potential),
influencing the atmospheric lifetime of methane through the consumption of the
hydroxyl radical (OH). Understanding the development of trends and identifying
trend reversals in atmospheric ethane is therefore crucial. Our dataset
consists of four series of daily ethane columns obtained from ground-based FTIR
measurements. As many other decadal time series, our data are characterized by
autocorrelation, heteroskedasticity, and seasonal effects. Additionally,
missing observations due to instrument failure or unfavorable measurement
conditions are common in such series. The goal of this paper is therefore to
analyze trends in atmospheric ethane with statistical tools that correctly
address these data features. We present selected methods designed for the
analysis of time trends and trend reversals. We consider bootstrap inference on
broken linear trends and smoothly varying nonlinear trends. In particular, for
the broken trend model, we propose a bootstrap method for inference on the
break location and the corresponding changes in slope. For the smooth trend
model we construct simultaneous confidence bands around the nonparametrically
estimated trend. Our autoregressive wild bootstrap approach, combined with a
seasonal filter, is able to handle all issues mentioned above.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-03-132020-06-172020-08-012020-08-272020-09-15
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 1903.05403
MDB-ID: No data to archive
PIKDOMAIN: RD3 - Transformation Pathways
DOI: 10.1007/s10584-020-02806-2
Organisational keyword: RD3 - Transformation Pathways
OATYPE: Hybrid - DEAL Springer Nature
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Climatic Change
Genre der Quelle: Zeitschrift, SCI, Scopus, p3
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 162 (1) Artikelnummer: - Start- / Endseite: 105 - 125 Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals80
Publisher: Springer