Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  COPOD: Copula-Based Outlier Detection

Li, Z., Zhao, Y., Botta, N., Ionescu, C., Hu, X. (2020): COPOD: Copula-Based Outlier Detection. - In: Plant, C., Wang, H., Cuzzocrea, A., Zaniolo, C., Wu, X. (Eds.), IEEE International Conference on Data Mining (ICDM), Piscataway, NJ : IEEE, 1118-1123.
https://doi.org/10.1109/ICDM50108.2020.00135

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Zheng Li, Botta_etal 2020 COPOD_ Copula-Based Outlier Detection-1.pdf (Preprint), 333KB
 
Datei-Permalink:
-
Name:
Zheng Li, Botta_etal 2020 COPOD_ Copula-Based Outlier Detection-1.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Zheng1, Autor
Zhao, Yue1, Autor
Botta, Nicola2, Autor                 
Ionescu, Cezar2, Autor
Hu, Xiyang1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: outlier detection, anomaly detection, copula
 Zusammenfassung: Outlier detection refers to the identification of rare
items that are deviant from the general data distribution. Existing
approaches suffer from high computational complexity, low
predictive capability, and limited interpretability. As a remedy, we
present a novel outlier detection algorithm called COPOD, which
is inspired by copulas for modeling multivariate data distribution.
COPOD first constructs a empirical copula, and then uses it to
predict tail probabilities of each given data point to determine its
level of “extremeness”. Intuitively, we think of this as calculating
an anomalous p-value. This makes COPOD both parameter-free,
highly interpretable, and computationally efficient. In this work,
we make three key contributions, 1) propose a novel, parameterfree
outlier detection algorithm with both great performance
and interpretability, 2) perform extensive experiments on 30
benchmark datasets to show that COPOD outperforms in most
cases and is also one of the fastest algorithms, and 3) release an
easy-to-use Python implementation for reproducibility.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-09-0120202020
 Publikationsstatus: Final veröffentlicht
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Interne Begutachtung
 Identifikatoren: MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Model / method: Machine Learning
Model / method: Nonlinear Data Analysis
DOI: 10.1109/ICDM50108.2020.00135
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IEEE International Conference on Data Mining (ICDM)
Genre der Quelle: Buch
 Urheber:
Plant, Claudia1, Herausgeber
Wang, Haixun1, Herausgeber
Cuzzocrea, Alfredo1, Herausgeber
Zaniolo, Carlo1, Herausgeber
Wu, Xindong1, Herausgeber
Affiliations:
1 External Organizations, ou_persistent22            
Ort, Verlag, Ausgabe: Piscataway, NJ : IEEE
Seiten: 1464 Band / Heft: - Artikelnummer: - Start- / Endseite: 1118 - 1123 Identifikator: ISBN: 978-1-7281-8316-9