Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Learning from urban form to predict building heights

Milojevic-Dupont, N., Hans, N., Kaack, L. H., Zumwald, M., Andrieux, F., de Barros Soares, D., Lohrey, S., Pichler, P.-P., Creutzig, F. (2020): Learning from urban form to predict building heights. - PloS ONE, 15, 12, e0242010.
https://doi.org/10.1371/journal.pone.0242010

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
24879oa.pdf (Verlagsversion), 3MB
Name:
24879oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Milojevic-Dupont , Nikola1, Autor
Hans , Nicolai1, Autor
Kaack , Lynn H.1, Autor
Zumwald , Marius1, Autor
Andrieux , Francois1, Autor
de Barros Soares , Daniel1, Autor
Lohrey , Steffen1, Autor
Pichler, Peter-Paul2, Autor              
Creutzig , Felix1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Understanding cities as complex systems, sustainable urban planning depends on reliable high-resolution data, for example of the building stock to upscale region-wide retrofit policies. For some cities and regions, these data exist in detailed 3D models based on real-world measurements. However, they are still expensive to build and maintain, a significant challenge, especially for small and medium-sized cities that are home to the majority of the European population. New methods are needed to estimate relevant building stock characteristics reliably and cost-effectively. Here, we present a machine learning based method for predicting building heights, which is based only on open-access geospatial data on urban form, such as building footprints and street networks. The method allows to predict building heights for regions where no dedicated 3D models exist currently. We train our model using building data from four European countries (France, Italy, the Netherlands, and Germany) and find that the morphology of the urban fabric surrounding a given building is highly predictive of the height of the building. A test on the German state of Brandenburg shows that our model predicts building heights with an average error well below the typical floor height (about 2.5 m), without having access to training data from Germany. Furthermore, we show that even a small amount of local height data obtained by citizens substantially improves the prediction accuracy. Our results illustrate the possibility of predicting missing data on urban infrastructure; they also underline the value of open government data and volunteered geographic information for scientific applications, such as contextual but scalable strategies to mitigate climate change.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2020-11-152020-12-09
 Publikationsstatus: Final veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: PIKDOMAIN: FutureLab - Social Metabolism and Impacts
Organisational keyword: FutureLab - Social Metabolism and Impacts
DOI: 10.1371/journal.pone.0242010
MDB-ID: yes - 3137
PIKDOMAIN: RD5 - Climate Economics and Policy - MCC Berlin
Organisational keyword: RD5 - Climate Economics and Policy - MCC Berlin
Working Group: Cities: Data Science and Sustainable Planning
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PloS ONE
Genre der Quelle: Zeitschrift, SCI, Scopus, p3, OA
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 15 (12) Artikelnummer: e0242010 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/r1311121
Publisher: Public Library of Science (PLoS)