English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Is the protected area coverage still relevant in protecting the Southern Ground-hornbill (Bucorvus leadbeateri) biological niche in Zimbabwe? Perspectives from ecological predictions

Mudereri, B. T., Chitata, T., Chemura, A., Makaure, J., Mukanga, C., Abdel-Rahman, E. M. (2021): Is the protected area coverage still relevant in protecting the Southern Ground-hornbill (Bucorvus leadbeateri) biological niche in Zimbabwe? Perspectives from ecological predictions. - GIScience & Remote Sensing, 58, 3, 405-424.
https://doi.org/10.1080/15481603.2021.1883947

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Mudereri, Bester Tawona1, Author
Chitata, Tavengwa1, Author
Chemura, Abel2, Author              
Makaure, Joseph1, Author
Mukanga, Concilia1, Author
Abdel-Rahman, Elfatih M.1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, Potsdam, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Examining the suitability of landscape patches for endangered species enhances critical insights and indicators into the processes of population structure, community dynamics, and functioning in ecosystems particularly in protected areas (PAs). While PAs are the cornerstone in biodiversity conservation, there is debate on their efficacy to retain their conservation superiority over unprotected areas under climate change. In the present study, we examined the spatial and temporal effectiveness of PAs at maintaining suitable habitat for the “vulnerable” Southern Ground-hornbill (SGH), Bucorvus leadbeateri compared with the unprotected areas in Zimbabwe. We used a landscape-scale analysis of 182 PAs, their surrounding buffer zones, and unprotected areas coupled with three machine learning models (maximum entropy: MaxEnt, random forest, and support vector machines) to simulate SGH habitat suitability. Bioclimatic, vegetation seasonality and terrain variables were used as predictors against SGH “presence-only” observations and the models were projected for 2050 as future climatic scenarios (i.e. representative concentration pathways: RCP2.6 and RCP8.5). The true skill statistic (TSS) and area under the curve (AUC) were used to evaluate the performance of the modeling framework. Our results show that the PAs network in Zimbabwe is extremely relevant for the conservation of SGH, with 8% of the suitable habitat within PAs projected to become unsuitable by 2050. Higher levels of protection status resulted in higher levels of suitable habitat for the SGH while the suitability of eastern-based PAs showed a decrease and the western-based PAs will potentially increase in suitability. Thus, conservation strategies should take the eastern PAs range contraction and associated westward shift into account. The established potential increase in suitability outside the PAs network (23%–31%) might increase conflicts between agriculture and conservation. We, therefore, suggest an expanded cross-boundary institutional alliance and policy development with all stakeholders to implement a holistic conservation plan. Our work demonstrates the importance of combining multi-source remotely sensed data in predicting habitat suitability for endangered species such as the SGH as key indicators of biological conservation and PAs’ effectiveness.

Details

show
hide
Language(s):
 Dates: 2021-02-092021-02-092021-06-01
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1080/15481603.2021.1883947
PIKDOMAIN: RD2 - Climate Resilience
MDB-ID: No data to archive
Organisational keyword: RD2 - Climate Resilience
Research topic keyword: Adaptation
Research topic keyword: Biodiversity
Research topic keyword: Climate impacts
Regional keyword: Africa
Model / method: Machine Learning
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: GIScience & Remote Sensing
Source Genre: Journal, SCI, Scopus
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 58 (3) Sequence Number: - Start / End Page: 405 - 424 Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/giscience-and-remote-sensing
Publisher: Taylor & Francis