Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators

Sawicki, J., Berner, R., Löser, T., Schöll, E. (2022): Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators. - Frontiers in Physiology, 1, 730385.
https://doi.org/10.3389/fnetp.2021.730385

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
26478oa.pdf (Verlagsversion), 3MB
Name:
26478oa.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sawicki, Jakub1, Autor           
Berner, Rico2, Autor
Löser, Thomas2, Autor
Schöll, Eckehard1, Autor                 
Affiliations:
1Potsdam Institute for Climate Impact Research, ou_persistent13              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: adaptive networks; cluster synchronization; coupled oscillators; pattern formation; sepsis; tumor disease; cytokine activity
 Zusammenfassung: In this study, we provide a dynamical systems perspective to the modelling of pathological
states induced by tumors or infection. A unified disease model is established using the innate
immune system as the reference point. We propose a two-layer network model for carcinogenesis
and sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and
the co-evolutionary dynamics of parenchymal, immune cells, and cytokines. Our aim is to show
that the complex cellular cooperation between parenchyma and stroma (immune layer) in the
physiological and pathological case can be qualitatively and functionally described by a simple
paradigmatic model of phase oscillators. By this, we explain carcinogenesis, tumor progression,
and sepsis by destabilization of the healthy homeostatic state (frequency synchronized), and
emergence of a pathological state (desynchronized or multifrequency cluster). The coupled
dynamics of parenchymal cells (metabolism) and nonspecific immune cells (reaction of innate
immune system) are represented by nodes of a duplex layer. The cytokine interaction is modeled
by adaptive coupling weights between the nodes representing the immune cells (with fast
adaptation time scale) and the parenchymal cells (slow adaptation time scale) and between
the pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling).
Thereby, carcinogenesis, organ dysfunction in sepsis, and recurrence risk can be described in a
correct functional context.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-11-162022-01-172022-01-17
 Publikationsstatus: Final veröffentlicht
 Seiten: 16
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
MDB-ID: No data to archive
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Quantitative Methods
OATYPE: Gold Open Access
DOI: 10.3389/fnetp.2021.730385
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Frontiers in Physiology
Genre der Quelle: Zeitschrift, SCI, Scopus, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 1 Artikelnummer: 730385 Start- / Endseite: - Identifikator: Publisher: Frontiers
CoNE: https://publications.pik-potsdam.de/cone/journals/resource/frontiers-in-physiology