English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost

Yin, H., Brauer, M., Zhang, J. (., Cai, W., Navrud, S., Burnett, R., Howard, C., Deng, Z., Kammen, D. M., Schellnhuber, H. J., Chen, K., Kan, H., Chen, Z.-M., Chen, B., Zhang, N., Mi, Z., Coffman, D., Cohen, A. J., Guan, D., Zhang, Q., Gong, P., Liu, Z. (2021): Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost. - The Lancet Planetary Health, 5, 6, e356-e367.
https://doi.org/10.1016/S2542-5196(21)00131-5

Item is

Files

show Files
hide Files
:
PIIS2542519621001315.pdf (Publisher version), 2MB
Name:
PIIS2542519621001315.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Yin, Hao1, Author
Brauer, Michael1, Author
Zhang, Junfeng (Jim)1, Author
Cai, Wenjia1, Author
Navrud, Ståle1, Author
Burnett, Richard1, Author
Howard, Courtney1, Author
Deng, Zhu1, Author
Kammen, Daniel M1, Author
Schellnhuber, Hans Joachim2, Author              
Chen, Kai1, Author
Kan, Haidong1, Author
Chen, Zhan-Ming1, Author
Chen, Bin1, Author
Zhang, Ning1, Author
Mi, Zhifu1, Author
Coffman, D'Maris1, Author
Cohen, Aaron J1, Author
Guan, Dabo1, Author
Zhang, Qiang1, Author
Gong, Peng1, AuthorLiu, Zhu1, Author more..
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Background The health impacts of ambient air pollution impose large costs on society. Although all people are exposed to air pollution, the older population (ie, those aged ≥60 years) tends to be disproportionally affected. As a result, there is growing concern about the health impacts of air pollution as many countries undergo rapid population ageing. We investigated the spatial and temporal variation in the economic cost of deaths attributable to ambient air pollution and its interaction with population ageing from 2000 to 2016 at global and regional levels. Methods In this global analysis, we developed an age-adjusted measure of the value of a statistical life-year (VSLY) to estimate the economic cost of deaths attributable to ambient PM2·5 pollution using Global Burden of Diseases, Injuries, and Risk Factors Study 2017 data and country-level socioeconomic information. First, we estimated the global age-specific and cause-specific mortality and years of life lost (YLLs) attributable to PM2·5 pollution using the global exposure mortality model and global estimates of exposure at 0·1° × 0·1° (about 11 km × 11 km at the equator) resolution. Second, for each year between 2000 and 2016, we translated the YLLs within each age group into a health-related cost using a country-specific, age-adjusted measure of VSLY. Third, we decomposed the major driving factors that contributed to the temporal change in health costs related to PM2·5. Finally, we did a sensitivity test to analyse the variability of the estimated health costs to four alternative valuation measures. We identified the uncertainty intervals (UIs) from 1000 draws of the parameters and concentration–response functions by age, cause, country, and year. All economic values are reported in 2011 purchasing power parity-adjusted US dollars. All simulations were done with R, version 3.6.0. Findings Globally, in 2016, PM2·5 was estimated to have caused 8·42 million (95% UI 6·50–10·52) attributable deaths, which was associated with 163·68 million (116·03–219·44) YLLs. In 2016, the global economic cost of deaths attributable to ambient PM2·5 pollution for the older population was US$2·40 trillion (1·89–2·93) accounting for 59% (59–60) of the cost for the total population ($4·09 trillion [3·19–5·05]). The economic cost per capita for the older population was $2739 (2160–3345) in 2016, which was 10 times that of the younger population (ie, those aged <60 years). By assessing the factors that contributed to economic costs, we found that increases in these factors changed the total economic cost by 77% for gross domestic product (GDP) per capita, 21% for population ageing, 16% for population growth, −41% for age-specific mortality, and −0·4% for PM2·5 exposure. Interpretation The economic cost of ambient PM2·5 borne by the older population almost doubled between 2000 and 2016, driven primarily by GDP growth, population ageing, and population growth. Compared with younger people, air pollution leads to disproportionately higher health costs among older people, even after accounting for their relatively shorter life expectancy and increased disability. As the world's population is ageing, the disproportionate health cost attributable to ambient PM2·5 pollution potentially widens the health inequities for older people. Countries with severe air pollution and rapid ageing rates need to take immediate actions to improve air quality. In addition, strategies aimed at enhancing health-care services, especially targeting the older population, could be beneficial for reducing the health costs of ambient air pollution.

Details

show
hide
Language(s):
 Dates: 2021-06
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/S2542-5196(21)00131-5
PIKDOMAIN: Director Emeritus / Executive Staff / Science & Society
Organisational keyword: Director Emeritus Schellnhuber
MDB-ID: No data to archive
OATYPE: Gold Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Lancet Planetary Health
Source Genre: Journal, SCI, Scopus, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 5 (6) Sequence Number: - Start / End Page: e356 - e367 Identifier: Other: 2542-5196
Publisher: Elsevier
CoNE: https://publications.pik-potsdam.de/cone/journals/resource/lancet-planetary-health