English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Climatic variations during the Holocene inferred from radiocarbon and stable carbon isotopes in speleothems from a high-alpine cave

Welte, C., Fohlmeister, J., Wertnik, M., Wacker, L., Hattendorf, B., Eglinton, T. I., Spötl, C. (2021): Climatic variations during the Holocene inferred from radiocarbon and stable carbon isotopes in speleothems from a high-alpine cave. - Climate of the Past, 17, 5, 2165-2177.
https://doi.org/10.5194/cp-17-2165-2021

Item is

Files

show Files
hide Files
:
cp-17-2165-2021.pdf (Publisher version), 3MB
Name:
cp-17-2165-2021.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Welte, Caroline1, Author
Fohlmeister, Jens2, Author              
Wertnik, Melina1, Author
Wacker, Lukas1, Author
Hattendorf, Bodo1, Author
Eglinton, Timothy I.1, Author
Spötl, Christoph1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Content

show
hide
Free keywords: -
 Abstract: Rapid and continuous analysis of radiocarbon (14C) concentration in carbonate samples at spatial resolution down to 100 µm has been made possible with the new LA-AMS (laser ablation accelerator mass spectrometry) technique. This novel approach can provide radiocarbon data at a spatial resolution similar to that of stable carbon (C) isotope measurements by isotope ratio mass spectrometry of micromilled samples and, thus, can help to interpret δ13C signatures, which otherwise are difficult to understand due to numerous processes contributing to changes in the C-isotope ratio. In this work, we analyzed δ13C and 14C on the Holocene stalagmite SPA 127 from the high-alpine Spannagel Cave (Austria). Both proxies respond in a complex manner to climate variability. Combined stable carbon and radiocarbon profiles allow three growth periods characterized by different δ13C signatures to be identified: (i) the period 8.5 to 8.0 ka is characterized by relatively low δ13C values with small variability combined with a comparably high radiocarbon reservoir effect (expressed as dead carbon fraction, dcf) of around 60 %. This points towards C contributions of host rock dissolution and/or from an “old” organic matter (OM) reservoir in the karst potentially mobilized due to the warm climatic conditions of the early Holocene. (ii) Between 8 and 3.8 ka there was a strong variability in δ13C with values ranging from −8 ‰ to +1 ‰ and a generally lower dcf. The δ13C variability is most likely caused by changes in C exchange between cave air CO2 and dissolved inorganic carbon in drip water in the cave, which are induced by reduced drip rates as derived from reduced stalagmite growth rates. Additionally, the lower dcf indicates that the OM reservoir contributed less to stalagmite growth in this period possibly as a result of reduced meteoric precipitation or because it was exhausted. (iii) In the youngest section between 3.8 and 2.4 ka, comparably stable and low δ13C values, combined with an increasing dcf reaching up to 50 % again, hint towards a contribution of an aged OM reservoir in the karst. This study reveals the potential of combining high-resolution 14C profiles in speleothems with δ13C records in order to disentangle climate-related C dynamics in karst systems.Rapid and continuous analysis of radiocarbon (14C) concentration in carbonate samples at spatial resolution down to 100 µm has been made possible with the new LA-AMS (laser ablation accelerator mass spectrometry) technique. This novel approach can provide radiocarbon data at a spatial resolution similar to that of stable carbon (C) isotope measurements by isotope ratio mass spectrometry of micromilled samples and, thus, can help to interpret δ13C signatures, which otherwise are difficult to understand due to numerous processes contributing to changes in the C-isotope ratio. In this work, we analyzed δ13C and 14C on the Holocene stalagmite SPA 127 from the high-alpine Spannagel Cave (Austria). Both proxies respond in a complex manner to climate variability. Combined stable carbon and radiocarbon profiles allow three growth periods characterized by different δ13C signatures to be identified: (i) the period 8.5 to 8.0 ka is characterized by relatively low δ13C values with small variability combined with a comparably high radiocarbon reservoir effect (expressed as dead carbon fraction, dcf) of around 60 %. This points towards C contributions of host rock dissolution and/or from an “old” organic matter (OM) reservoir in the karst potentially mobilized due to the warm climatic conditions of the early Holocene. (ii) Between 8 and 3.8 ka there was a strong variability in δ13C with values ranging from −8 ‰ to +1 ‰ and a generally lower dcf. The δ13C variability is most likely caused by changes in C exchange between cave air CO2 and dissolved inorganic carbon in drip water in the cave, which are induced by reduced drip rates as derived from reduced stalagmite growth rates. Additionally, the lower dcf indicates that the OM reservoir contributed less to stalagmite growth in this period possibly as a result of reduced meteoric precipitation or because it was exhausted. (iii) In the youngest section between 3.8 and 2.4 ka, comparably stable and low δ13C values, combined with an increasing dcf reaching up to 50 % again, hint towards a contribution of an aged OM reservoir in the karst. This study reveals the potential of combining high-resolution 14C profiles in speleothems with δ13C records in order to disentangle climate-related C dynamics in karst systems.Rapid and continuous analysis of radiocarbon (14C) concentration in carbonate samples at spatial resolution down to 100 µm has been made possible with the new LA-AMS (laser ablation accelerator mass spectrometry) technique. This novel approach can provide radiocarbon data at a spatial resolution similar to that of stable carbon (C) isotope measurements by isotope ratio mass spectrometry of micromilled samples and, thus, can help to interpret δ13C signatures, which otherwise are difficult to understand due to numerous processes contributing to changes in the C-isotope ratio. In this work, we analyzed δ13C and 14C on the Holocene stalagmite SPA 127 from the high-alpine Spannagel Cave (Austria). Both proxies respond in a complex manner to climate variability. Combined stable carbon and radiocarbon profiles allow three growth periods characterized by different δ13C signatures to be identified: (i) the period 8.5 to 8.0 ka is characterized by relatively low δ13C values with small variability combined with a comparably high radiocarbon reservoir effect (expressed as dead carbon fraction, dcf) of around 60 %. This points towards C contributions of host rock dissolution and/or from an “old” organic matter (OM) reservoir in the karst potentially mobilized due to the warm climatic conditions of the early Holocene. (ii) Between 8 and 3.8 ka there was a strong variability in δ13C with values ranging from −8 ‰ to +1 ‰ and a generally lower dcf. The δ13C variability is most likely caused by changes in C exchange between cave air CO2 and dissolved inorganic carbon in drip water in the cave, which are induced by reduced drip rates as derived from reduced stalagmite growth rates. Additionally, the lower dcf indicates that the OM reservoir contributed less to stalagmite growth in this period possibly as a result of reduced meteoric precipitation or because it was exhausted. (iii) In the youngest section between 3.8 and 2.4 ka, comparably stable and low δ13C values, combined with an increasing dcf reaching up to 50 % again, hint towards a contribution of an aged OM reservoir in the karst. This study reveals the potential of combining high-resolution 14C profiles in speleothems with δ13C records in order to disentangle climate-related C dynamics in karst systems.

Details

show
hide
Language(s):
 Dates: 2021-10-192021-10-19
 Publication Status: Finally published
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/cp-17-2165-2021
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
MDB-ID: Entry suspended
OATYPE: Gold Open Access
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climate of the Past
Source Genre: Journal, SCI, Scopus, p3, oa
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 17 (5) Sequence Number: - Start / End Page: 2165 - 2177 Identifier: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/journals78
Publisher: Copernicus