日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Mathematical modeling of COVID-19 pandemic in the context of sub-Saharan Africa: a short-term forecasting in Cameroon and Gabon

Nkwayep, C. H., Bowong, S., Tsanou, B., Aziz Alaoui, M. A., & Kurths, J. (2022). Mathematical modeling of COVID-19 pandemic in the context of sub-Saharan Africa: a short-term forecasting in Cameroon and Gabon. Mathematical Medicine and Biology, 39(1), 1-48. doi:10.1093/imammb/dqab020.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Nkwayep_dqab020.pdf (出版社版), 5MB
 
ファイルのパーマリンク:
-
ファイル名:
Nkwayep_dqab020.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Nkwayep, C. H. 1, 著者
Bowong, S. 1, 著者
Tsanou, B. 1, 著者
Aziz Alaoui, M. A. 1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: In this paper, we propose and analyse a compartmental model of COVID-19 to predict and control the outbreak. We first formulate a comprehensive mathematical model for the dynamical transmission of COVID-19 in the context of sub-Saharan Africa. We provide the basic properties of the model and compute the basic reproduction number R0 when the parameter values are constant. After, assuming continuous measurement of the weekly number of newly COVID-19 detected cases, newly deceased individuals and newly recovered individuals, the Ensemble of Kalman filter (EnKf) approach is used to estimate the unmeasured variables and unknown parameters, which are assumed to be time-dependent using real data of COVID-19. We calibrated the proposed model to fit the weekly data in Cameroon and Gabon before, during and after the lockdown. We present the forecasts of the current pandemic in these countries using the estimated parameter values and the estimated variables as initial conditions. During the estimation period, our findings suggest that R0≈1.8377 in Cameroon, while R0≈1.0379 in Gabon meaning that the disease will not die out without any control measures in theses countries. Also, the number of undetected cases remains high in both countries, which could be the source of the new wave of COVID-19 pandemic. Short-term predictions firstly show that one can use the EnKf to predict the COVID-19 in Sub-Saharan Africa and that the second vague of the COVID-19 pandemic will still increase in the future in Gabon and in Cameroon. A comparison between the basic reproduction number from human individuals R0h and from the SARS-CoV-2 in the environment R0v has been done in Cameroon and Gabon. A comparative study during the estimation period shows that the transmissions from the free SARS-CoV-2 in the environment is greater than that from the infected individuals in Cameroon with R0h = 0.05721 and R0v = 1.78051. This imply that Cameroonian apply distancing measures between individual more than with the free SARS-CoV-2 in the environment. But, the opposite is observed in Gabon with R0h = 0.63899 and R0v = 0.39894. So, it is important to increase the awareness campaigns to reduce contacts from individual to individual in Gabon. However, long-term predictions reveal that the COVID-19 detected cases will play an important role in the spread of the disease. Further, we found that there is a necessity to increase timely the surveillance by using an awareness program and a detection process, and the eradication of the pandemic is highly dependent on the control measures taken by each government.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2022-01-192022-03
 出版の状態: Finally published
 ページ: 48
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1093/imammb/dqab020
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Health
Research topic keyword: Nonlinear Dynamics
Model / method: Nonlinear Data Analysis
Working Group: Network- and machine-learning-based prediction of extreme events
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Mathematical Medicine and Biology
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 39 (1) 通巻号: - 開始・終了ページ: 1 - 48 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/0265-0746
Publisher: Oxford University Press