日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Recurrence flow measure of nonlinear dependence

Braun, T., Krämer, K.-H., & Marwan, N. (2023). Recurrence flow measure of nonlinear dependence. European Physical Journal - Special Topics, 232(1), 57-67. doi:10.1140/epjs/s11734-022-00687-3.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
27494oa.pdf (出版社版), 2MB
ファイル名:
27494oa.pdf
説明:
-
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Braun, Tobias1, 著者              
Krämer, Kai-Hauke1, 著者              
Marwan, Norbert1, 著者              
所属:
1Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Couplings in complex real-world systems are often nonlinear and scale dependent. In many cases, it is crucial to consider a multitude of interlinked variables and the strengths of their correlations to adequately fathom the dynamics of a high-dimensional nonlinear system. We propose a recurrence-based dependence measure that quantifies the relationship between multiple time series based on the predictability of their joint evolution. The statistical analysis of recurrence plots (RPs) is a powerful framework in nonlinear time series analysis that has proven to be effective in addressing many fundamental problems, e.g., regime shift detection and identification of couplings. The recurrence flow through an RP exploits artifacts in the formation of diagonal lines, a structure in RPs that reflects periods of predictable dynamics. Using time-delayed variables of a deterministic uni-/multivariate system, lagged dependencies with potentially many time scales can be captured by the recurrence flow measure. Given an RP, no parameters are required for its computation. We showcase the scope of the method for quantifying lagged nonlinear correlations and put a focus on the delay selection problem in time-delay embedding which is often used for attractor reconstruction. The recurrence flow measure of dependence helps to identify non-uniform delays and appears as a promising foundation for a recurrence-based state space reconstruction algorithm.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2022-10-112023-02
 出版の状態: Finally published
 ページ: 11
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1140/epjs/s11734-022-00687-3
MDB-ID: yes - 3375
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Development of advanced time series analysis techniques
Research topic keyword: Nonlinear Dynamics
Research topic keyword: Atmosphere
Research topic keyword: Weather
Regional keyword: Global
Model / method: Nonlinear Data Analysis
Model / method: Quantitative Methods
Model / method: Open Source Software
OATYPE: Hybrid - DEAL Springer Nature
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: European Physical Journal - Special Topics
種別: 学術雑誌, SCI, Scopus, p3
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 232 (1) 通巻号: - 開始・終了ページ: 57 - 67 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/150617
Publisher: Springer