日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Special Issue on Computational Intelligence for Perception and Decision-Making of Autonomous Systems [Guest Editorial]

Tang, Y., Yen, G. G., & Kurths, J. (2022). Special Issue on Computational Intelligence for Perception and Decision-Making of Autonomous Systems [Guest Editorial]. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(6), 1287-1289. doi:10.1109/TETCI.2022.3219539.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Tang_2022_Guest_Editorial_Special_Issue_on_Computational_Intelligence_for_Perception_and_Decision-Making_of_Autonomous_Systems.pdf (出版社版), 201KB
 
ファイルのパーマリンク:
-
ファイル名:
Tang_2022_Guest_Editorial_Special_Issue_on_Computational_Intelligence_for_Perception_and_Decision-Making_of_Autonomous_Systems.pdf
説明:
-
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Tang, Yang1, 著者
Yen, Gary G. 1, 著者
Kurths, Jürgen2, 著者              
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: The papers in this special section focus on computational intelligence for perception and decision making of autonomous systems. Due to powerful capabilities in environmental perception, real-time computing, and intelligent decision-making, autonomous systems have demonstrated their great potential to efficiently accomplish a variety of complex tasks that humans cannot. Hence, autonomous systems are able to facilitate the development of almost every walk of life and have attracted increasing attention from both academia and industry. However, given high dimensional, heterogeneous, unstructured, and unpredictable data sampled from different modalities of sensors, autonomous systems with conventional algorithms may fail to acquire the accurate information related to the environment, and make the appropriate decision to complete assigned tasks. Notice that recent advanced computational intelligence algorithms including deep neural networks and evolutionary algorithms have the unique ability to efficiently extract useful information from the multi-source heterogeneous data, and thus have been successfully applied in the fields of computer vision, natural language processing, and so on. Therefore, it is promising to have a thorough and tight integration between computational intelligence and autonomous systems by upgrading advanced and innovative computational intelligence algorithms to ensure high-level environmental perception and decision-making of autonomous systems.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2022-11-292022-12-01
 出版の状態: Finally published
 ページ: 3
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1109/TETCI.2022.3219539
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Working Group: Network- and machine-learning-based prediction of extreme events
Research topic keyword: Complex Networks
Research topic keyword: Nonlinear Dynamics
Model / method: Machine Learning
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: IEEE Transactions on Emerging Topics in Computational Intelligence
種別: 学術雑誌, SCI, Scopus
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 6 (6) 通巻号: - 開始・終了ページ: 1287 - 1289 識別子(ISBN, ISSN, DOIなど): CoNE: https://publications.pik-potsdam.de/cone/journals/resource/2471-285X
Publisher: Institute of Electrical and Electronics Engineers (IEEE)