???ENUM_LANGUAGE_JA???
 
???mainMenu_lnkPrivacyPolicy??? ???mainMenu_lnkPolicy???

???ViewItemPage???

  Computational singular perturbation method for the non-standard FitzHugh-Nagumo system

Liu, Y., Liu, S., Kurths, J. (2022): Computational singular perturbation method for the non-standard FitzHugh-Nagumo system. - EPL (Europhysics Letters), 139, 3, 32002.
https://doi.org/10.1209/0295-5075/ac33ca

Item is

???ViewItemFull_lblBasic???

???ViewItemFull_lblShowGroup??? ???ViewItemFull_lblHideGroup???
???ViewItemFull_lblGenre???: ???ENUM_GENRE_ARTICLE???

???ViewItemFull_lblSubHeaderLocators???

???ViewItemFull_lblShowGroup???

???ViewItemFull_lblCreators???

???ViewItemFull_lblShowGroup???
???ViewItemFull_lblHideGroup???
 ???ViewItemFull_lblCreators???:
Liu, Yaru1, ???ENUM_CREATORROLE_AUTHOR???
Liu, Shenquan1, ???ENUM_CREATORROLE_AUTHOR???
Kurths, Jürgen2, ???ENUM_CREATORROLE_AUTHOR???           
???ViewItemFull_lblAffiliations???:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

???EditItem_lblContent???

???ViewItemFull_lblShowGroup???
???ViewItemFull_lblHideGroup???
???ViewItemFull_lblSubject???: ???lbl_noEntry???
 ???ViewItemFull_lblAbstract???: An effective computational singular perturbation (CSP) method for solving the non-standard FitzHugh-Nagumo system is constructed and evaluated by detailed algebra factorization. Furthermore, our studies illustrate a geometric CSP framework with the layer and reduced problems for the non-standard FitzHugh-Nagumo system. Finally, the first two CSP manifolds and two CSP fast fibers are also presented for the FitzHugh-Nagumo system by one-step and two-step CSP updates in this context. The CSP method can further describe Fenichel manifolds and facilitate a better understanding of the dynamic properties of complex neuron models or circuit neural models.

???ViewItemFull_lblSubHeaderDetails???

???ViewItemFull_lblShowGroup???
???ViewItemFull_lblHideGroup???
???ViewItemFull_lblLanguages???: eng - English
 ???ViewItemFull_lblDates???: 2022-08-012022-08-01
 ???ViewItemFull_lblPublicationStatus???: ???ViewItem_lblPublicationState_published-in-print???
 ???ViewItemFull_lblPages???: ???lbl_noEntry???
 ???ViewItemFull_lblPublishingInfo???: ???lbl_noEntry???
 ???ViewItemFull_lblTOC???: ???lbl_noEntry???
 ???ViewItemFull_lblRevisionMethod???: ???ENUM_REVIEWMETHOD_PEER???
 ???ViewItemFull_lblIdentifiers???: ???ENUM_IDENTIFIERTYPE_DOI???: 10.1209/0295-5075/ac33ca
???ENUM_IDENTIFIERTYPE_MDB_ID???: No data to archive
???ENUM_IDENTIFIERTYPE_PIKDOMAIN???: RD4 - Complexity Science
???ENUM_IDENTIFIERTYPE_ORGANISATIONALK???: RD4 - Complexity Science
???ENUM_IDENTIFIERTYPE_WORKINGGROUP???: Network- and machine-learning-based prediction of extreme events
???ENUM_IDENTIFIERTYPE_RESEARCHTK???: Complex Networks
???ENUM_IDENTIFIERTYPE_RESEARCHTK???: Health
???ENUM_IDENTIFIERTYPE_RESEARCHTK???: Nonlinear Dynamics
 ???ViewItemFull_lblDegreeType???: ???lbl_noEntry???

???ViewItemFull_lblSubHeaderEvent???

???ViewItemFull_lblShowGroup???

???ViewItemFull_lblSubHeaderLegalCase???

???ViewItemFull_lblShowGroup???

???g_project_info???

???ViewItemFull_lblShowGroup???

???ViewItemFull_lblSubHeaderSource??? 1

???ViewItemFull_lblShowGroup???
???ViewItemFull_lblHideGroup???
???ViewItemFull_lblSourceTitle???: EPL (Europhysics Letters)
???ViewItemFull_lblSourceGenre???: ???ENUM_GENRE_JOURNAL???, SCI, Scopus, p3
 ???ViewItemFull_lblSourceCreators???:
???ViewItemFull_lblSourceAffiliations???:
???ViewItemFull_lblSourcePubInfo???: ???lbl_noEntry???
???ViewItemFull_lblPages???: ???lbl_noEntry??? ???ViewItemFull_lblSourceVolumeIssue???: 139 (3) ???ViewItemFull_lblSourceSequenceNo???: 32002 ???ViewItemFull_lblSourceStartEndPage???: ???lbl_noEntry??? ???ViewItemFull_lblSourceIdentifier???: ???ENUM_IDENTIFIERTYPE_CONE???: https://publications.pik-potsdam.de/cone/journals/resource/journals132
???ENUM_IDENTIFIERTYPE_PUBLISHER???: IOP Publishing