Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Machine Learning Technology for EEG-Forecast of the Blood–Brain Barrier Leakage and the Activation of the Brain’s Drainage System during Isoflurane Anesthesia

Semyachkina-Glushkovskaya, O., Sergeev, K., Semenova, N., Slepnev, A., Karavaev, A., Hramkov, A., Prokhorov, M., Borovkova, E., Blokhina, I., Fedosov, I., Shirokov, A., Dubrovsky, A., Terskov, A., Manzhaeva, M., Krupnova, V., Dmitrenko, A., Zlatogorskaya, D., Adushkina, V., Evsukova, A., Tuzhilkin, M., Elizarova, I., Ilyukov, E., Myagkov, D., Tuktarov, D., Kurths, J. (2023): Machine Learning Technology for EEG-Forecast of the Blood–Brain Barrier Leakage and the Activation of the Brain’s Drainage System during Isoflurane Anesthesia. - Biomolecules, 13, 11, 1605.
https://doi.org/10.3390/biom13111605

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
29324oa.pdf (Verlagsversion), 13MB
Name:
29324oa.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Semyachkina-Glushkovskaya, Oxana1, Autor
Sergeev, Konstantin1, Autor
Semenova, Nadezhda1, Autor
Slepnev, Andrey1, Autor
Karavaev, Anatoly1, Autor
Hramkov, Alexey1, Autor
Prokhorov, Mikhail1, Autor
Borovkova, Ekaterina1, Autor
Blokhina, Inna1, Autor
Fedosov, Ivan1, Autor
Shirokov, Alexander1, Autor
Dubrovsky, Alexander1, Autor
Terskov, Andrey1, Autor
Manzhaeva, Maria1, Autor
Krupnova, Valeria1, Autor
Dmitrenko, Alexander1, Autor
Zlatogorskaya, Daria1, Autor
Adushkina, Viktoria1, Autor
Evsukova, Arina1, Autor
Tuzhilkin, Matvey1, Autor
Elizarova, Inna1, AutorIlyukov, Egor1, AutorMyagkov, Dmitry1, AutorTuktarov, Dmitry1, AutorKurths, Jürgen2, Autor               mehr..
Affiliations:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Anesthesia enables the painless performance of complex surgical procedures. However, the effects of anesthesia on the brain may not be limited only by its duration. Also, anesthetic agents may cause long-lasting changes in the brain. There is growing evidence that anesthesia can disrupt the integrity of the blood–brain barrier (BBB), leading to neuroinflammation and neurotoxicity. However, there are no widely used methods for real-time BBB monitoring during surgery. The development of technologies for an express diagnosis of the opening of the BBB (OBBB) is a challenge for reducing post-surgical/anesthesia consequences. In this study on male rats, we demonstrate a successful application of machine learning technology, such as artificial neural networks (ANNs), to recognize the OBBB induced by isoflurane, which is widely used in surgery. The ANNs were trained on our previously presented data obtained on the sound-induced OBBB with an 85% testing accuracy. Using an optical and nonlinear analysis of the OBBB, we found that 1% isoflurane does not induce any changes in the BBB, while 4% isoflurane caused significant BBB leakage in all tested rats. Both 1% and 4% isoflurane stimulate the brain’s drainage system (BDS) in a dose-related manner. We show that ANNs can recognize the OBBB induced by 4% isoflurane in 57% of rats and BDS activation induced by 1% isoflurane in 81% of rats. These results open new perspectives for the development of clinically significant bedside technologies for EEG-monitoring of OBBB and BDS.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2023-11-022023-11-02
 Publikationsstatus: Final veröffentlicht
 Seiten: 20
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3390/biom13111605
MDB-ID: No data to archive
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Research topic keyword: Health
Research topic keyword: Complex Networks
Model / method: Nonlinear Data Analysis
OATYPE: Gold Open Access
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biomolecules
Genre der Quelle: Zeitschrift, SCI, oa
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 13 (11) Artikelnummer: 1605 Start- / Endseite: - Identifikator: CoNE: https://publications.pik-potsdam.de/cone/journals/resource/2218-273X
Publisher: MDPI