日本語
 
Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Exploring Geometric Deep Learning for Precipitation Nowcasting

Zhao, S., Saha, S., Xiong, Z., Boers, N., & Zhu, X. X. (2023). Exploring Geometric Deep Learning for Precipitation Nowcasting. In IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium: Proceedings. New York: Institute of Electrical and Electronics Engineers. doi:10.1109/IGARSS52108.2023.10282387.

Item is

基本情報

表示: 非表示:
資料種別: 書籍の一部

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Zhao, Shan 1, 著者
Saha, Sudipan 1, 著者
Xiong, Zhitong 1, 著者
Boers, Niklas2, 著者              
Zhu, Xia Xiang1, 著者
所属:
1External Organizations, ou_persistent22              
2Potsdam Institute for Climate Impact Research, ou_persistent13              

内容説明

表示:
非表示:
キーワード: -
 要旨: Precipitation nowcasting (up to a few hours) remains a challenge due to the highly complex local interactions that need to be captured accurately. Convolutional Neural Networks rely on convolutional kernels convolving with grid data and the extracted features are trapped by limited receptive field, typically expressed in excessively smooth output compared to ground truth. Thus they lack the capacity to model complex spatial relationships among the grids. Geometric deep learning aims to generalize neural network models to non-Euclidean domains. Such models are more flexible in defining nodes and edges and can effectively capture dynamic spatial relationship among geographical grids. Motivated by this, we explore a geometric deep learning-based temporal Graph Convolutional Network (GCN) for precipitation nowcasting. The adjacency matrix that simulates the interactions among grid cells is learned automatically by minimizing the L1 loss between prediction and ground truth pixel value during the training procedure. Then, the spatial relationship is refined by GCN layers while the temporal information is extracted by 1D convolution with various kernel lengths. The neighboring information is fed as auxiliary input layers to improve the final result. We test the model on sequences of radar reflectivity maps over the Trento/Italy area. The results show that GCNs improves the effectiveness of modeling the local details of the cloud profile as well as the prediction accuracy by achieving decreased error measures.

資料詳細

表示:
非表示:
言語: eng - 英語
 日付: 2023-10-202023-10-20
 出版の状態: Finally published
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): MDB-ID: No data to archive
DOI: 10.1109/IGARSS52108.2023.10282387
PIKDOMAIN: RD4 - Complexity Science
Organisational keyword: RD4 - Complexity Science
Organisational keyword: FutureLab - Artificial Intelligence in the Anthropocene
Model / method: Machine Learning
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium: Proceedings
種別: 書籍
 著者・編者:
所属:
出版社, 出版地: New York : Institute of Electrical and Electronics Engineers
ページ: - 巻号: - 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISBN: 9798350331745